

The Adequacy of Indonesian Energy Resources For Future Electricity Supply

Dr. Herman Darnel Ibrahim Chairman of ICEES

MAREM and IESR Webinar
"Menimbang Risiko PLTN di Indonesia"

Jakarta, 21 July 2020

Supply Scenario To 2050 [Revised]

center for energy and environmental studies	'					_	
					In Terrawatthours		
Production and Energy Sources	2018 * Actual	2020	2030	2040	2050	2050 Plant Capacity [MW]	
Produksi [KEN]		374	898	1521	2081	NA	
Produksi Revisi	284	300	600	1000	1300	NA	
Renewable							
Geothermal	15	16	30	80	150	20000	
Hydro	23	24	50	100	200	50000	
Wind	0,6	0,6	8	20	30	10000	26
Solar	0,2	0,4	30	80	120	80000	
Biomass+Biogas	9	10	50	110	175	25000	_ =
Non Renewable							" IV
Gas	59	59	120	200	240	35000	
Coal	159	172	300	400	400	55000	F
Diesel [BBM]	18	18	12	10	5	1000	1
Total	284	300	600	1000	1320	276000	
RE Percentage	17	17	28	39	51	67	
* Source: Energy Ou	ıtlook 2019	DEN					444

- Actual electricity consumption by 2018 is much below the KEN projection.
- Electricity Consumption in 2030 is estimated at 600 Twh [900] and in 2050 will be around 1300 Twh [2100]

Energy Resources and Potential

3 n	itening,	for sustainability							
No		Energy Source	Reser	Approximate Supply Capability [Practical]					
	NO	Energy Source	Reserve [C]	Resource [S]	Unit	C [%]	S [%]	MTOE PE	Eq. MWe
	1.	Renewable Energy							
	1.1	Biomass [Biofuel]	30	175	10^6 kliter		60	95	NA
	1.2	Geothermal	2300	28000	Mwe		90	85	25000
	1.3	Hydro	6000	75000	MWe		80	30	60000
	1.4	Ocean	NA	48000	MWe		25	5.4	12000
	1.5	Solar	NA	1200	GWe		10	18	120000
	1.6	Biomass [Waste]	NA	50000	MWe		60	55	30000
	1.7	Wind	NA	15000	MWe		70	4.8	10000
	2.	Fossil Energy							
	2.1	Petroleum	7990	56600	10^6 Barrel	100	50	5298	NA
	2.2	Coal	21130	104940	10^6 Ton	100	30	26324	NA
	2.3	Natural Gas	159.6	334.5	TCF	100	50	8242	NA
	2.4	СВМ	0	453.3	TCF	100	20	2286	NA
	2.5	Nuclear	NA	34112	Ton U		50	1835	NA
	3.	Total 1.1-1.7 [RE]						293	265000
	4.	Total 2.1-2.5						43985	NA

25 GWe

60 GWe

12 GWe

120 GWe

30 GWe

10 GWe

^{*} Most of the data is from Ministry of Energy and Mineral Resources

28 Milyar Barrel 5,300 MTOE


31,5 Milyar Tons 26,300 MTOE

168 Terra Cubic Feet 8,200 MTOE

Location of Energy Resources

Indonesia Has Sufficient Energy Sources

Primary Energy Source	Energy Unit		Practical Exploitable To 2050	Projected Consumption To 2050	
Hydro Power	MWe	75,000	60,000	55,000	
Geothermal	MWe	MWe 29,000 25,0		20,000	
Solar	MWe	1,200,000	120,000	80,000	
Wind	MWe	15,000	15,000	10,000	
Biomass MWe		50,000	30,000	25,000	
Natural Gas	TCF	334	167	50	
Coal Million Tons		105,000	31,500	5000	
Petroleum	Miilion Barrels	56,000	28,000	625	

Our energy resourses not very rich but more than adequate to supply domestic demand until 2050.

Nuclear Power Investment Is Very High

Region and	Overnight Cost USD	Investme		vernight+ r kilowatt]	nein. danke	
Country	per kilowatt	On Time 4 Years	1 Year Delay	2 Years Delay	3 Years Delay	
Asia: China and South Korea	3500	4550	4800	5100	5400	CSACTION CONTINUES CONTINU
Erurope: EU and United Kingdom	5500	7150	7600	8000	8500	Nuclear Power
North America: USA and Canada	5000	6500	6900	7300	7700	
Sourcer: Internati [NEA] : "Nuclear I		TTT				

Special Notes:

- The investment to build 3000 MW NPP [Nuclear PP] can build 12000 MW Coal SPP or 18,000 MW Gas CCPP
- So far all Nuclear Power Plant were built by Government [No NPP of IPP]
- Most of NPP Construction experienced Cost Overrun [Cost Increase]

Being Smart, From Largest Coal Exporter To Future Domestic Energy Security

					2018 In Million Tor	
No	Country	Reserves [Ranking]	World Top 10 Producers	Export	Consumption	Per Capita [Ton]
1	China	138,819 [4]	3,523.20	-838	4361	3.1
2	India	101,363 [5]	716	1.1	714.9	0.5
3	United States	250,219 [1]	702.3	96.9	605.4	1.8
4	Australia	147,435 [3]	481.3	417.7	63.6	2.4
5	Indonesia	37,000 [6]	474	429.4	103.5	0.4
6	Russia	160,364 [2]	411.2	209.6	201.6	1.4
7	South Africa	9,893 [12]	252.3	92.2	160.1	2.7
8	Germany	36,103 [7]	175.1	1.8	173.3	2.1
9	Poland	26,479 [9]	127.1	8.2	118.9	3.1
10	Kazakhstan	25,609 [10]	111.1	5.9	105.2	5.5

Source: Reserves: wikipedia.com; Production: worldatlas.com; Consumption: wordometer.info

Indonesian Coal Status:

Export World No 1

Production World No 5

Reserve World No. 6

Masih Sangat Cukup Ruang Untuk Memanfaatkan Coal Dalam Produksi Listrik

Domestic Consumption World No. 12 Dunia, below Japan and South Korea

Oev Capita Consumption Among Top Consumers [No 20 of 20]

Closing

- Our energy resourses not very rich but more than adequate to supply domestic demand.
- Indonesian coal consumption per capita is the lowest among top 20 coal producers.
- Use Coal to secure domestic supply. Exporting coal provides cheaper power to other countries.
- Development of NPP will increase Country Debt [Utility Debt]and Cost of electricity production
- It is not rational to build NPP, while keep exporting large amount of coal and natural gas.

