

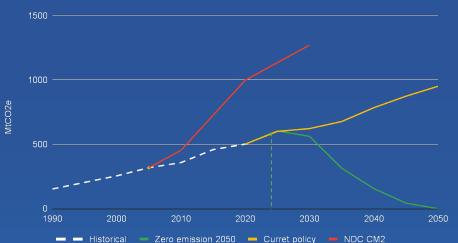
Indonesia Energy Transition Outlook 2022 Aiming for Net-Zero Emissions by 2050

Launching event of IETO 2022 21 December 2021

> Julius Christian Adiatma Researcher, IESR

f iesr.id

(iesr.id


@www.iesr.or.id

() IESR

in iesr

Pathway to zero emissions energy system by 2050

- Indonesia's NDC is insufficient to keep temperature increase below 1.5^oC
- To comply with Paris Agreement's 1.5^oC limit, energy sector's emissions need to peak by 2025 and reach zero by 2050.
- By 2030 Indonesia should have:
 - RE mix in power generation reach 47%
 - 140 GW renewable energy (inc. 108 GW solar PV)
 - No new CFPPs and retire CFPPs > 15 y.o
 - 110 million e-motorcycles, 3 million e-cars, 2.4 million e-buses
 - Biofuel use ~30 million kl
 - 8 TWh of BESS and 4 TWh of PHES installed

Energy sector GHG emissions

How far have we progressed in 2021?

Shift of commitment marked 2021 energy policy scene

• New policy and regulations supporting decarbonization

LTS-LCCR	"Green" RUPTL	CFPP phase-out	Carbon pricing	Rooftop solar PV	MEPS for appliances
Net-zero by 2060 or sooner Rely on fossil + carbon capture	21 GW renewables (4.7 GW solar PV) RE share 25% in 2030	No new CFPP beyond 2028 Retirement of CFPP >30 y.o Early retire 9.2 GW	Carbon tax at min. USD 2.1/tCO2e ETS scheme trialed with CFPP	Net-metering 1:1 Credit accumulate to 6 months Possible carbon trading	Standards follows international best practices Applies to AC, fans, refrigerators, rice cookers

• Few crucial long-awaited policies/regulations are yet to be enacted: renewable energy bill, renewable energy tariff regulation, and energy conservation regulation

Indonesia still reluctant to move away from coal

- 40 countries, including Indonesia declaring to move away from unabated coal in 2040s
- Global demand for coal is expected to decline if countries follow current pledges
- Domestic demand from power sector will decline after 2030 when CFPPs start to be retired
- Fossil fuel companies start diversifying their portfolio
- Government insisted on coal downstream projects despite economically unfeasible

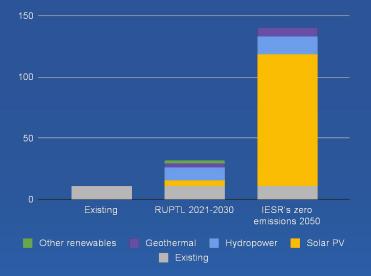
Coal still dominated power sector as renewables growth sluggish

- Only <400 MW of RE was added, total capacity reached only 10.9 GW
- 300 MW of CFPP started operation, another 4 GW will follow early 2022
- Coal share in power generation mix 65%
- RE Investment remained under USD 2 billion

WHY?

- Unattractive investment climate: time-consuming permitting process, high interest rates
- Poor bankability: low RE tariff, unattractive PPA terms
- Delays of crucial regulations: RE bill, Perpres on RE tariff

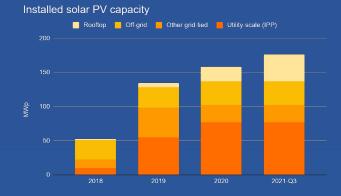
Renewables installed capacity and 2025 target



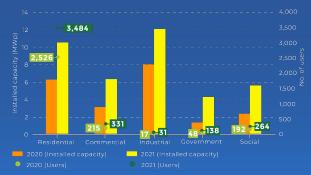
Big changes in power planning, but still insufficient to achieve Paris Agreement

- PLN aims to achieve carbon neutrality by 2060
- No new CFPPs after 2028 and retirement of CFPPs >30 y.o starting 2030 + early retirement of 9.2 GW
- 21 GW renewable energy planned by 2030, while 130 GW is needed
- Strategies to reduce emissions include CFPP co-firing, de-dieselization, nuclear power, and carbon capture
 - Co-firing is costly with limited impact
 - Global nuclear SMR projects faced delays and uncertainties
 - CCS far more expensive than solar + storage (~USD 80/MWh vs. ~USD 40/MWh in 2040)

Renewable capacity needed vs. planned

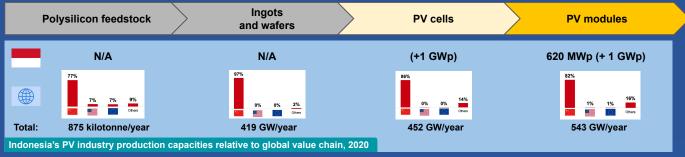

Indonesia Energy Transition Outlook 2022 | Institute for Essential Services Reform (IESR)

Solar PV growth stagnated, only rooftop solar PV increased


- Solar PV growth of only 18 MW driven (almost) entirely by rooftop solar PV, total capacity reached 176 MW
- Rooftop solar PV capacity reached 39 MW
- Total residential rooftop PV reached 10.5 MW, while market potential reached 6.5 GW (Jawa-Bali)

WHY?

- Lack of regular auction schedules
- Renewables tariff
 For rooftop solar PV
- Lack of financing availability
- Expensive product perception


Note: Commercial refers to "Business" in PLN's consumer group Source: MEMR: IESR analysis.

Promising future of solar PV with GWs of projects announced

- Project planned:
 - 4.7 GW utility-scale by 2030 under RUPTL (585 MWp already in pipeline)
 - 2.7 GWp utility-scale non-RUPTL already in pipeline (inc. for export)
 - 9.7 GWp utility-scale announced for export
 - 3.6 GWp rooftop by 2025 under PSN (~500 MW already in pipeline)
- Floating PV gains popularity with 700 MW projects listed in RUPTL
- Ex-mining site provides alternative location for utility solar PV, 430 MW projects proposed to the next RUPTL

PV modules manufacturing industry is not ready to cater the need for gigawatts of solar PV per year

Source: Ministry of Industry, APAMSI, BloombergNEF; IESR analysis. Note: Production capacities include plants that have been commissioned, are under construction, or have been announced.

- 620 MWp PV modules production capacity, only 10% utilization rate
- Higher cost compared to imported modules
- Subpar quality/efficiency due to older technologies
- No manufacturer currently comply with LCR regulation

Storage use is still limited in existing power system

- Current battery storage (BESS) application is limited to off-grid system
 - Small battery (upto 1 kWh) for electrifying households in rural villages
 - 1.8 GWh BESS planned for de-dieselization program
 - Solar power export will use BESS ~12 GWh
- PHES as flexible generation
 - Lower cost and higher energy delivery compared to BESS¹
 - 4.2 GW planned in RUPTL, 1 GW expected to start operation 2025
 - 7.3 TWh PHES potential

0-7.5 GWh 7.5-63.8 GWh 63.8-220.2 GWh 220.2-391.9 GWh 391.9-995.6 GWh

Sluggish EV adoption as barriers persisted

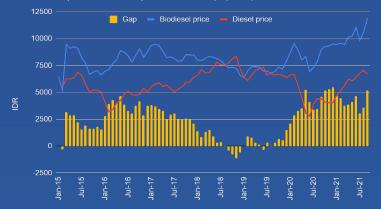
- EV sales remained marginal, less than 1% of vehicle sales
 - TCO of electric cars is higher than ICE
 - ~23% of EV (car) price comes from various taxes
 - ICE performs better than EV at comparable price (drive range, top speed, refueling duration)
 - Incentives for ICE (luxury tax discounts)
 - Slow installation of public charging and battery swap stations
- MEMR plan to ban sales of ICE motorcycles and cars by 2040 and 2050, not yet put into regulation

EV adoption	/ <u>/</u>	D □ □ □ □ □ □ □	Motorcycle			
Certified vehicles (2020)		29 nits	1,947 units			
Certified vehicles (2021))12 hits	5,486 units			
Targeted vehicles (2030)	2 M units		13 M units			
	Electric	ICE	Electric	ICE		
OTR price (IDR million)	637	533	19	17.8		
Annual driving distance (km/year)	20,000	20,000	10,000	10,000		
Annual fuel cost (IDR million/year)	4.7	15.3	0.6	1.3		
Annual maintenance and insurance costs, and taxes (IDR million/year)	15	16.7	0.58	1.3		
Salvage value (IDR million)	159	213	0.6	6.5		
TCO (IDR million)	614	532	24.8	26.5		

Development of domestic upstream industries is needed to comply with local content requirements

'22 [•]23 '24 '25 '26 '28 '29 bnwards 40% 80% 60% 80% 60% 35% 40% 4W 2W Source: Mol, 2021

Local content requirement adjustment for years ahead (%)


Existing companies in domestic battery supply chain

- EV producers start proliferating (esp. two-wheelers), but upstream industries are underdeveloped
- The LCR is increasing to 60% in 2 years, upstream industries (battery) need to be built soon
 - Battery is main component of EV (~35% LCR)
 - Current electric two-wheelers manufacturers only managed to fulfill 40-47% LCR
 - IBC's battery plant is expected to start in 2024

Clean fuels dominated by biodiesel, other alternatives lack support

- To date, biodiesel is the only clean fuel alternative for non-electricity use
- Biofuel development reached important milestone with the flight test of 2.4% bioavtur
- Further utilization of palm-oil biofuel is hampered by sustainability issues and high commodity prices

Biodiesel price, Diesel price and Gap (IDR)

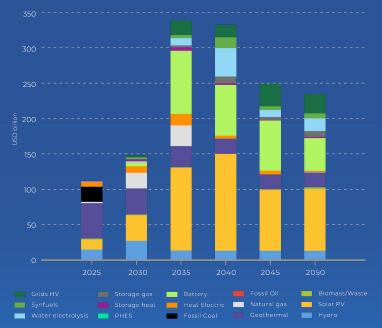
- Other clean fuel alternatives rely on private initiatives, lacking regulatory support
 - Bio-CNG in palm oil mill for own consumption
 - Green hydrogen project for own consumption in refinery
 - Green hydrogen project for electricity storage

Few provinces ready for energy transition

22 provinces have RUED enacted, only few have operational regulations in place

• DKI Jakarta:

Gub. regulation targeting net-zero 2050 APBD allocation for Rooftop solar PV on public buildings Green building incentives, electric buses procurement


- Central Java (Solar Province Initiative): APBD allocation for rooftop solar PV for economic recovery program Jateng Petro Energi start exploring renewable energy opportunities Several Lols for floating PV development (>700 MWp potential)
- Bali:

Bali Clean Energy regulation: rooftop solar PV in government and SOE buildings Economic recovery roadmap targeting 53% RE in 2045

• Jambi, West Java, West Nusa Tenggara are planning to issue regulations/instructions to support rooftop solar PV adoption

Various fund sources available to leverage investment low carbon technologies

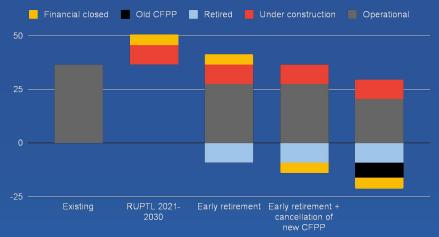
- 20-25 billion annual investment required, financial instruments needed to attract investment
- Various potential fund sources available, but underutilized:
 - International financing
 - Non-conventional financing: green bond/sukuk, islamic finance, blended finance, municipal bonds
 - Carbon tax could provide additional fund
- Local banks could support renewables projects

Capex in 5-year Intervals

Source: IESR, Agora Energiewende & LUT University, 2021

What to expect in 2022?

Renewables ready to flourish once investment climate improves


- New policy directions in 2021 promise better future
- Enactment of long-awaited regulations
 - Perpres RE Tariff
 - Regulation on Energy Conservation
 - Renewable Energy Law
- Improving investment climate is the crucial first step in realizing additional 10 GW of RE by 2025
 - Regular, timely, transparent auctions
 - Streamlining of permitting process
 - Access to low interest loan
 - Improving RE projects' bankability
 - Enhance domestic industrial capacity
 - Temporary LCR waiver for PV modules

Planned new installation of renewables until 2025 (in RUPTL)

Early coal retirement is pivotal to enable rapid energy transition

- Retirement and cancellation of CFPP will provide more space for renewables acceleration
 - 9.2 GW early-retirement through ETM
 - 5 GW project pipeline not yet started construction
 - 7 GW over 30 y.o by 2030
- 1 GW CFPP retired/cancelled could open space for 4 GW of solar PV
- 1.8 GW pilot projects for early retirement is crucial milestone
- G20 summit as opportunity to showcase commitment

CFPP capacity by 2030 under different CFPP scenario

Private and local initiatives drive renewables adoption and energy efficiency measures

- More provincial government are going to issue circular letter (SE) and regulations to support rooftop solar PV deployment
- Household rooftop solar PV installation likely to increase following net-metering update
- More businesses (C&I) are installing rooftop solar PV, around 500 MWp are in pipeline
- Businesses start planning for emission reduction measures following carbon tax regulations: renewable energy and energy efficiency

More electric two-wheelers to be deployed

Electric vehicles

- Electric two-wheelers adoption by ride-hailing services will exceed ~25,000 units as companies started investing in electric vehicle manufacturers.
- Electric cars adoption will still be limited by the high upfront cost unless more incentives provided
- Government plan to ban ICE and impose carbon tax on transportation sector could attract more investment

Biofuel

- Biodiesel blending is unlikely to increase to 40% if palm oil price remains high. Otherwise, 40% FAME blend might be pursued.
- Bioethanol blending is still hindered by high production costs, although attractive proposal to blend bioethanol to higher RON gasoline might provide a solution

Thank you

f iesr.id

ENERGY STORAGE

() iesr.id

@www.iesr.or.id

((-))

IESR |

in iesr