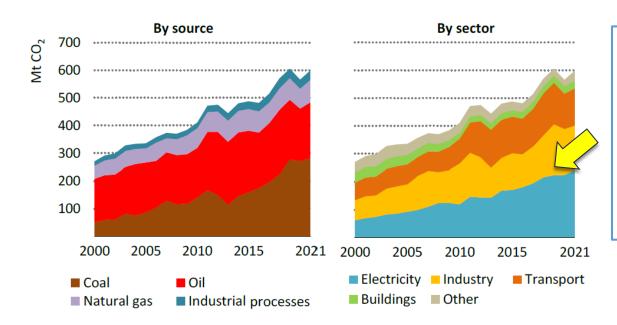


Indonesian Industry Decarbonization Roadmaps

Presentation at the Dissemination Workshop of Indonesia Industry Decarbonization Roadmap and Policy Recommendations


> Hongyou Lu Technology Researcher III

Research Team: Hongyou Lu, Stephane de la Rue du Can, Virginie Letschert, Hon Leung Curtis Wong, and Nan Zhou

> Energy Technologies Area Lawrence Berkeley National Laboratory October 24, 2023

Industry sector in Indonesia:

- Industry is one of the largest CO₂-emitting sectors in Indonesia
- Indonesia has pledged to achieve net-zero by 2060 or sooner.
- Lack of assessment on how Indonesian industry can achieve net-zero emissions by mid-century.

- Industry accounts for 1/3 of national energy-related CO₂ emissions – when only accounting for direct emissions from onsite fossil fuel use.
- Industrial CO₂ emissions are even larger – when indirect emissions from electricity consumption are included.

Source: IEA, 2020.

Project Objectives and Draft Report Completed

Project objectives:

- Develop industry-specific decarbonization roadmaps to support Indonesia to achieve its updated NDC goals
- Engage local stakeholders to assess local conditions in Indonesia
- Provide policy recommendations
- Establish one of the first industry decarbonization roadmaps for Indonesia

Sectors:

- Iron and Steel
- Cement
- Ammonia
- Pulp and Paper
- Textiles

Stakeholder engagement:

- Held six Focused Group Discussions (FGDs) in June 2023 with industry and policy stakeholders:
 - Ministry of Industry (MOI)
 - Ministry of Energy and Mineral Resources (MEMR)
 - Indonesia Cement Association (ASI)
 - Indonesia Iron and Steel Industry Association (IISIA)
 - Association of Indonesia Fertilizer Producers (APPI)
 - Indonesian Chemical Industry Federation (FIKI)
 - Indonesia Pulp and Paper Association (APKI)
- Local partner: Institute for Essential Services Reform (IESR)

Building and Industrial Applications Department Building Technology & Urban Systems Division Lawrence Berkeley National Laboratory

Industry Decarbonization Roadmaps for Indonesia:

Opportunities and challenges to net zero emissions

Hongyou Lu, Stephane de la Rue du Can, Virginie Letschert, Hon Leung Curtis Wong, and Nan Zhou

Farid Wijaya, Faricha Hidayati, Dwi Cahyo Husodo, Abyan Hilmy Yafi Deon Arinaldo

October 2023

Methodology: Industry Decarbonization Pillars

Material Efficiency and Demand Reduction	Energy Efficiency Improvement	Electrification	Fuel Switching	CCUS
Material efficiency (e.g., lightweight, longer lifetime, prefabrication, optimize cement content in concrete, improving manufacturing yields)	Component (e.g., kilns, furnaces, boilers) and system (e.g., process heating, steam system, motors, compressed air, pumps) energy efficiency improvement	Expand electricity end-use in industry applications	Alternative fuels (e.g., industrial wastes, municipal solid wastes)	CCUS in the cement industry (e.g., post- combustion, oxy-fuel combustion, indirect calcination)
Material substitution (e.g., use of engineered wood; alternative cements)	Waste heat and waste pressure recovery Energy management	Onsite or grid power generation using renewables	Solar thermal; biomass; geothermal	CCUS in the steel industry (e.g., Top-gas recycling with CCS, DRI with CCS)
Material reuse and recycling (e.g., direct component reuse, reduce construction wastes, increase recycling rates)	Integrative design and system optimization	Low-temperature heat electrification Medium-to-high temperature heat electrification	Hydrogen as feedstock and fuel	Carbon utilization Carbon to ethanol and other chemicals

Methodology: Scenarios Development

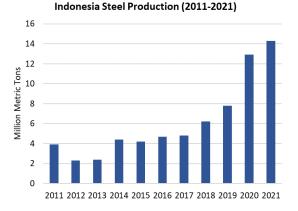
- Scenarios are constructed to analyze energy and CO₂ impacts of different decarbonization pathways.
- Developing scenarios allow us to test and evaluate the implications of different narratives.

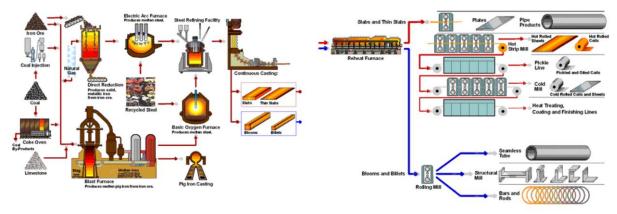
Three Scenarios:

Reference	Business as usual, no new policies, slow adoption of low- carbon technologies.
Near Zero 2060	Achieve near-zero emissions in modeled industrial sectors by 2060; support Indonesia's 2060 carbon neutrality goal; allow near-zero emissions, with residual emissions be offset by removals and mitigation measures in other sectors.
Accelerated 2050	Approaching net-zero emissions by 2050; aggressive adoption of low-carbon technologies; achieve maximum technical potential.

- It is technically feasible to achieve near-zero emissions in Indonesia's industrial sector by 2060, the target year of carbon neutrality in Indonesia's updated NDC. Achieving net-zero emissions by 2050, as aspired in the government goals, will require extraordinary efforts and a much more accelerated pace of adoption of low-carbon technologies.
- To achieve announced national economic development targets, it would require significant growth in the industrial sector, which provides the foundational materials and infrastructure for urbanization, improved living standards, and other industry (renewables, batteries, EVs) development that is necessary for energy transition.
- Industrial capacity expansion is expected in several key industries, e.g., iron and steel, driven by domestic construction demand and transfer of industrial capacity from other Asian countries (China, Japan, and South Korea, etc.). However, the current industry development is not on track with the Near Zero 2060 Scenario.
- Industry investment and policy decisions made today have important implications for 2050 and 2060. Industry development can be met by clean, low-carbon, and cost-effective technologies. It is urgent and critical to develop policy strategies and create the right market conditions to speed up the adoption and scale up.

- National strategies on carbon-intensive materials (e.g., steel, and cement), green energy carriers (e.g., hydrogen and ammonia), and cross-cutting technologies (e.g., industrial heat pumps, and CCS) need to be developed.
 Coordinated approach on infrastructure development (pipelines, storage sites, power transmission and distribution systems) and utilization is necessary.
- Industry decarbonization requires a fast-decarbonizing power sector. Near zero emissions in industry requires access to clean, low-cost electricity.
 Policies that support industry to connect to renewable power or develop its own renewable electricity renewables are very important.
- Industry decarbonization is inevitable but multifaceted. It has the potential to develop new industry, grow local economy, reduce air pollution, and be more competitive in global trade. It is critical to involve all stakeholders in this process to minimize negative impacts to local communities, and leverage this opportunity to reduce inequality.




Iron and Steel Industry in Indonesia

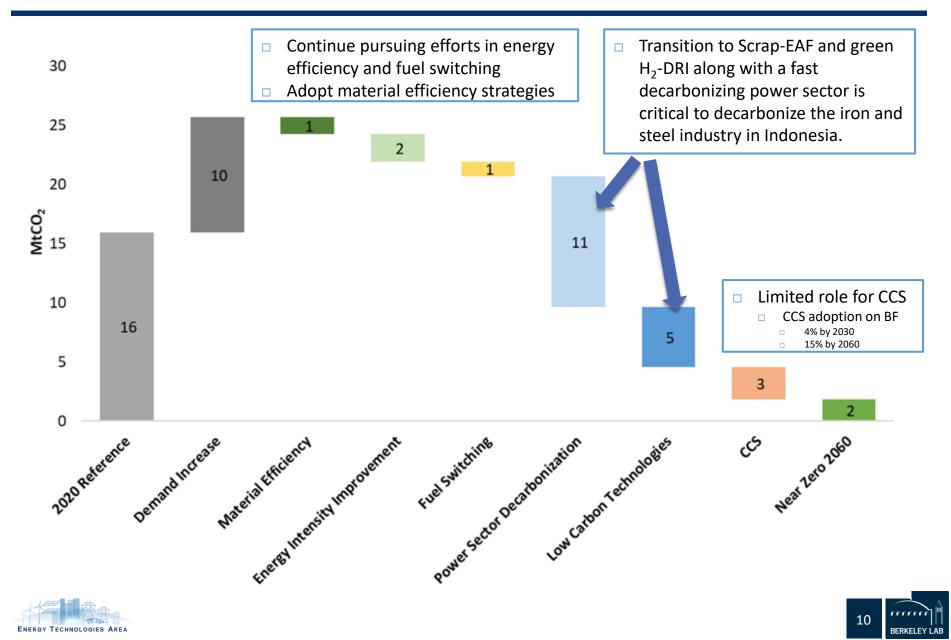
Iron and steel industry is the largest energyconsuming industry in Indonesia.

- Crude steel production has been increasing sharply, driven by a growing society (infrastructure projects, increasing population, urbanization, etc.)
- AAGR: 14% per year from 2011 to 2021

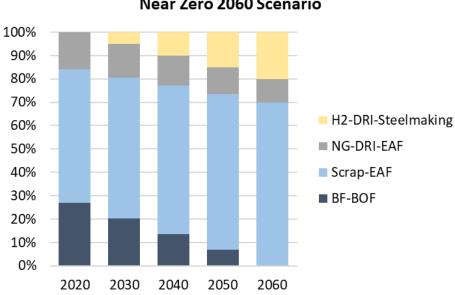
Process	2020
	(GJ/t steel)
Blast Furnace (BF)-Basic	20.4
Oxygen Furnace (BOF)	
Scrap-Electric Arc Furnace	2.3
(EAF)	
Direct Reduction of Iron - EAF	10.7
Steel Rolling	2.1

Source: WorldSteel, various years.

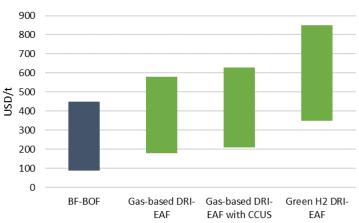
Source: AISI 2022.


Technologies and measures to decarbonize the iron and steel industry

Material Efficiency	Energy Efficiency	Low-Carbon Steelmaking Technologies and Fuel Switching	CCUS
 Improved design and construction Design for circular principles Improved semi-manufacturing yields Improved product manufacturing yields 	 Improving thermal energy efficiency 	 Increased use of electric arc furnaces (EAF) 	 CCU technologies: carbon to methanol, carbon to chemical
Extending product lifetime	Improving electrical energy efficiency	Onsite renewables	 Post-combustion CCS on BF
 Lightweight and higher strength materials Alternative materials and construction 	 Smart energy management 	 Alternative reducing agent (hydrogen, biomass) 	CCS on DRI process
 Direct component reuse (without melting) 	 Integrative design/system optimization 	 Hydrogen DRI Molten Oxide Electrolysis Electrowinning aqueous Electrowinning – molten salt 	CCS on smelting reduction process



CO₂ Impacts of Key Mitigation Options under the Near Zero 2060 Scenario for the Iron and Steel Industry in Indonesia

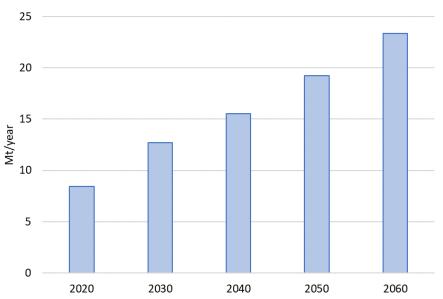


Low-Carbon Steelmaking Technologies

Share of Steelmaking Technologies in the Near Zero 2060 Scenario

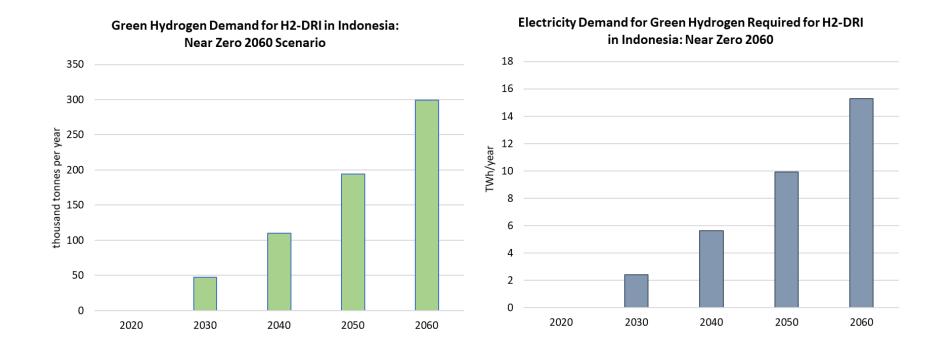
- Phasing out BF-BOF by 2060 in the Near Zero 2060 Scenario
- Increasing the share of scrap-based EAF to 70% by 2060
- The production share of natural-gas based
 DRI is decreased to 10%
- The share of green H2-DRI-EAF is increased to 20%

Indicative Levelized Cost of Steel Production Technologies


- Indicative levelized cost of steel production technologies
 - Low-carbon steelmaking technologies tend to be 10% - 100% more expensive than conventional primary steelmaking (without carbon pricing)
 - Cost is sensitive to natural gas and electricity prices

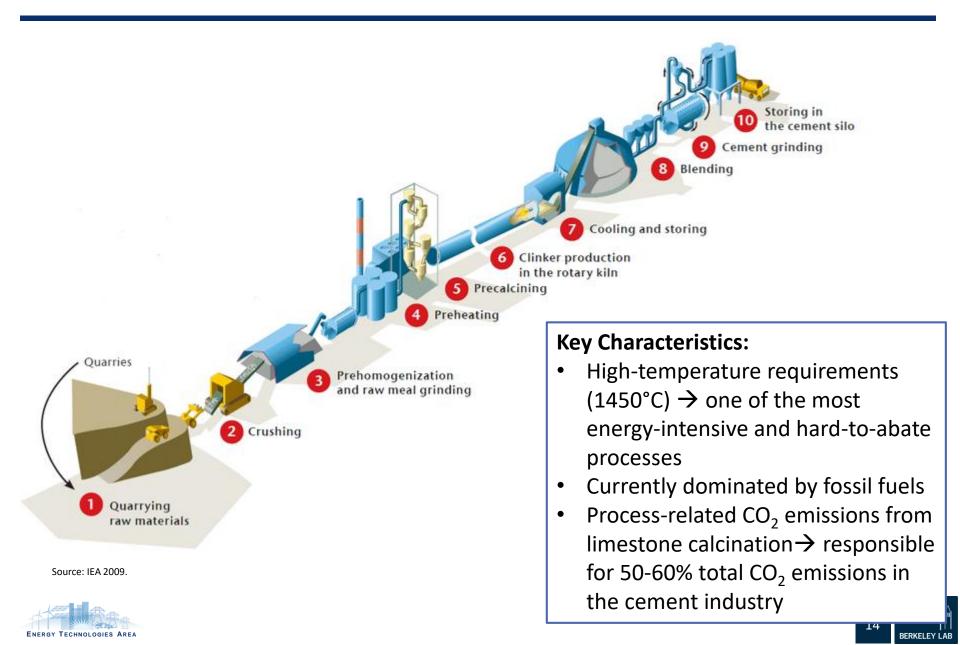
ENERGY TECHNOLOGIES AREA

Scrap Demand



- Scrap Requirements for Scrap-Based EAF Process in
Indonesia: Near Zero 2060 Scenarioa
- Total scrap required will be approximately 13 Mt/year by 2030 and increasing to 23 Mt/year by 2060
 - Based on total production forecast ("steady demand" scenario), the share of scrap-EAF, and scrap intensity in EAFs
 - The increase of scrap demand is not small, but it can be met by regional scrap resources, driven by peak steel demand and increased scrap availability in China.
 - A global steel study showed that by 2050, a total of 100 Mt of scrap is available in Southeast Asia, and more than 600 Mt of scrap is available from China alone

Demand for Green Hydrogen and Clean Electricity


 In the Near Zero 2060 Scenario, we estimated that Indonesia's iron and steel industry would require 47,000 tonnes/year of green hydrogen by 2030, and increases to 300,000 tonnes/year by 2060

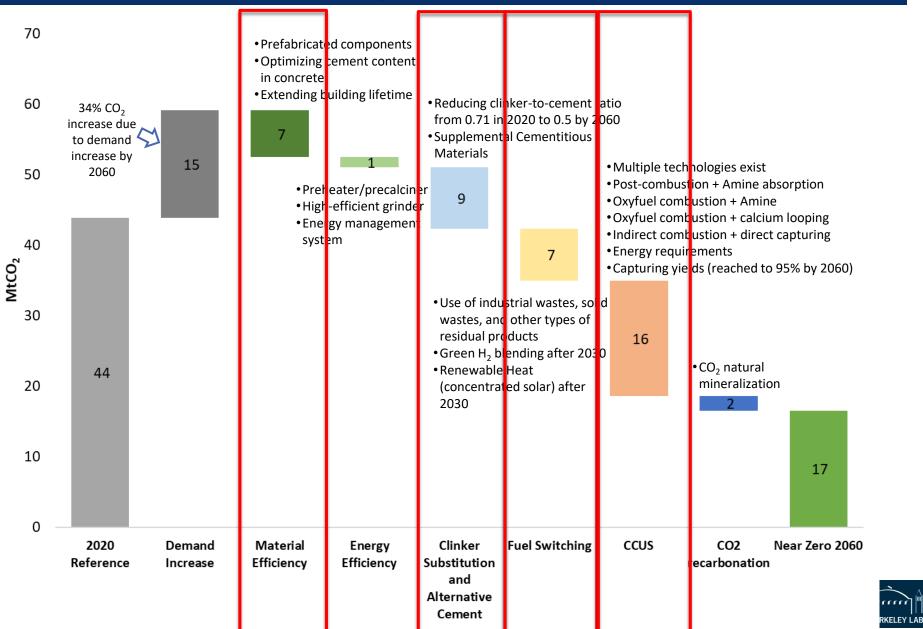
ENERGY TECHNOLOGIES ARE

 Indonesia would require additional 2.4 terawatt-hours (TWh) of zero-carbon power generation per year by 2030 and 15 TWh/year by 2060. In comparison, Indonesia generated a total of 65 TWh zerocarbon electricity in 2022.

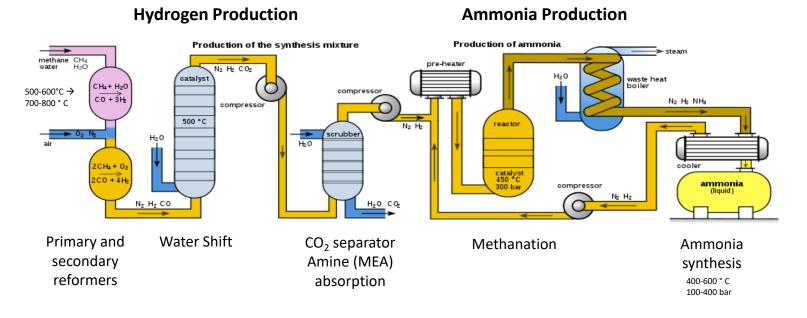
Cement Manufacturing Process

Commercialized and Emerging Technologies and Measures to Decarbonize the Cement Sector

Material Efficiency	Energy Efficiency	Clinker Substitution and Alternative Cement	Fuel Switching	CCUS
Improved building • design Optimizing cement content in concrete	Improving thermal energy efficiency	 Use of SCM: coal fly ash, BF slag 	 Alternative fuels: industrial wastes, municipal solid wastes, agricultural byproducts 	 Post-combustion CO₂ capturing technologies
Increased use of • precast components and post-tensioning of floor slabs Extending product lifetime	Improving electrical energy efficiency	 Use of SCM: calcined clay, end-of-life binder 	Onsite renewables	 Oxyfuel combustion CO₂ capturing or calcium looping
Alternative • materials (e.g., mass timber) Additive manufacturing	Smart energy management	 Use of SCM: other by products (silica fume, bauxite residue, agricultural byproduct ashes, etc.) 	Hydrogen blending	 Integrated calcium looping with the calcination process
Recycling • construction wastes Recycle concrete into recycled concrete aggregates	Integrative design/system optimization	Alternative cement chemistry	Concentrated solar	 CO₂ mineralization (CO₂ mixing and curing)

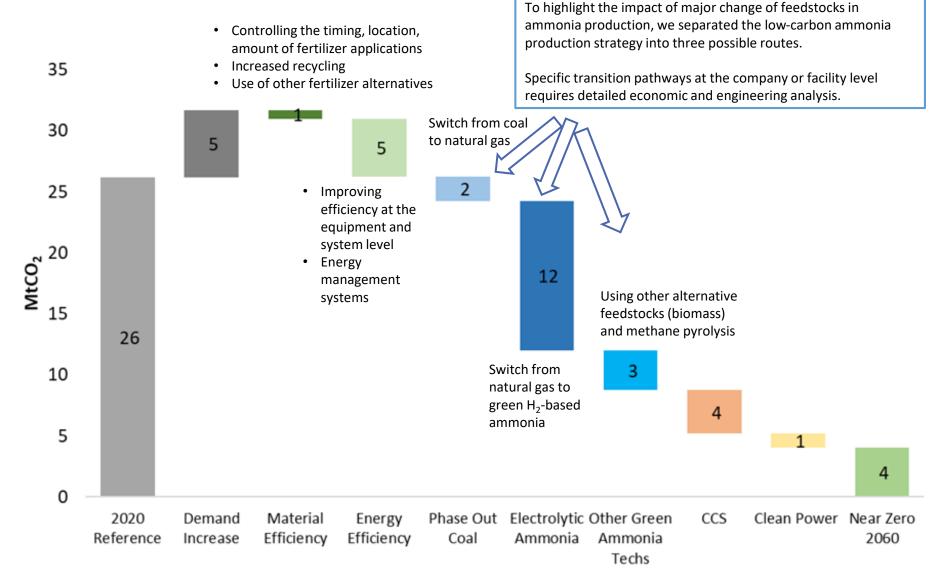


Indonesia's Cement Industry:


CO₂ Impacts of Key Mitigation Options under the Near-Zero 2060 Scenario

Ammonia

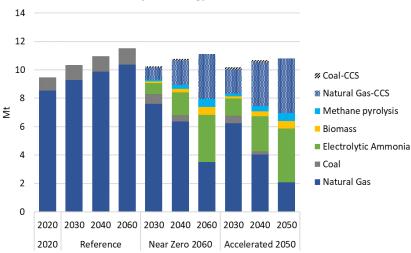
- □ Ammonia (NH₃) is a key ingredient for making mineral nitrogen fertilizers, which are critical inputs for societies to produce food, feed, and plants (fibers).
 - Ammonia is also used for other industrial applications, such as explosives, plastics, rubber, synthetic fibers, and other chemical uses.
- Indonesia is the 5th largest ammonia producer in the world, and about 72% of the ammonia produced is used for fertilizers.


Technologies and measures to decarbonize the ammonia industry

Material Efficien	cy Energy Efficiency	Green Ammonia	CCS
 Increase uptake efficiency of fertilizers Reduce leakage water and air 	 Improving thermal energy efficiency Improving electrical energy efficiency 	 Green hydrogen based ammonia production 	 Natural gas based ammonia production with CCS
Reduce food wa	stes • Smart energy management	 Biomass-based ammonia production 	 Coal-based ammonia production with CCS
 Increase plastic recycling 	 Integrative design/system optimization 	 Methane pyrolysis 	 Biomass gasification with CCS (not modeled)

CO₂ Impacts of Key Mitigation Options under the Near Zero 2060 Scenario for the Ammonia Industry in Indonesia

Note: CO₂ emissions include both direct and indirect CO₂ emissions.

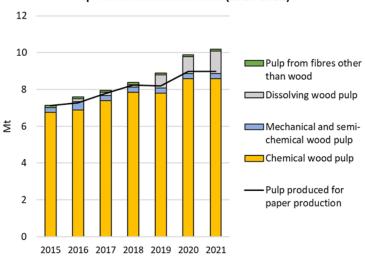


Green Ammonia Production Technologies

Green Ammonia Production	Technologies	Technology Readiness
Routes		Levels (TRL)
Ammonia synthesis	Electrolytic ammonia production	8 (industrial pilots)
	Biomass gasification ammonia production	5 (large prototype)
Direct ammonia production	Methane pyrolysis	7 (precommercial
		demonstration)
	Electrochemical process	1-3 (concept stage)
	Photochemical process	1-3 (concept stage)
	Plasmatic synthesis	1-3 (concept stage)
	Metallocomplexes	1-3 (concept stage)
	Bio-chemical (biomass digestion) process	1-3 (concept stage)

Sources: IEA 2021b; Olabi et al. 2023; Mitchell Crow 2023; Sánchez, Martín, and Vega 2019; Mission Possible Partnership 2022a; Smith, K. Hill, and Torrente-Murciano 2020.

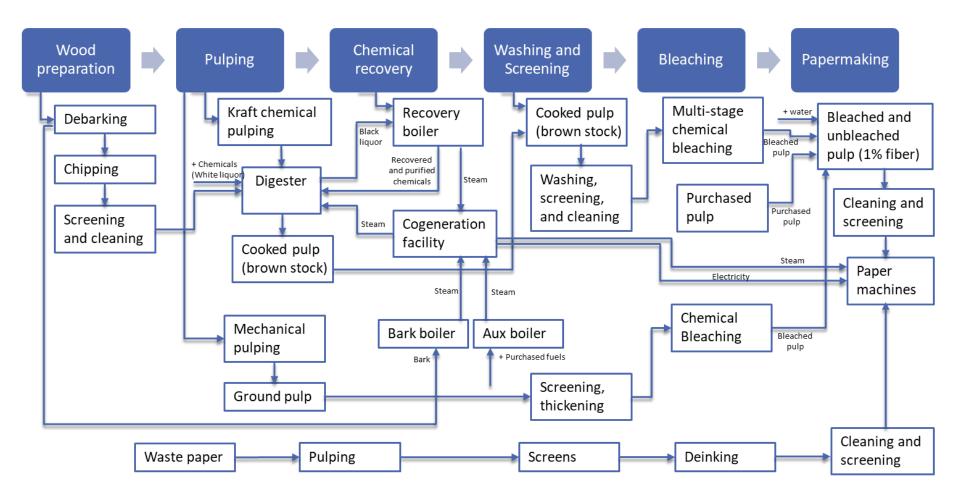
- The share of low-carbon ammonia production
 - Near Zero 2060: 18% of total production by 2030, and 69% by 2060
 - Accelerated 2050: 32% of total production by 2030, and 81% by 2050
- Need to develop a national green hydrogen strategy: site selection, permitting, access to renewables, and industry prioritization
- Require renewable, low-cost electricity
- Infrastructure development strategy


Indonesian Ammonia Production by Technology and Scenario



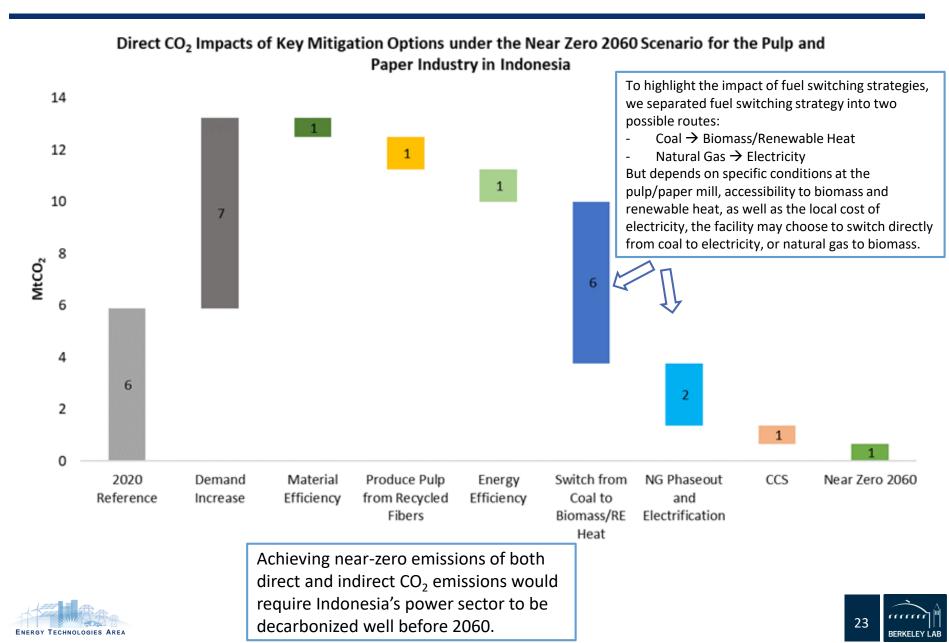
Pulp and Paper Production in Indonesia

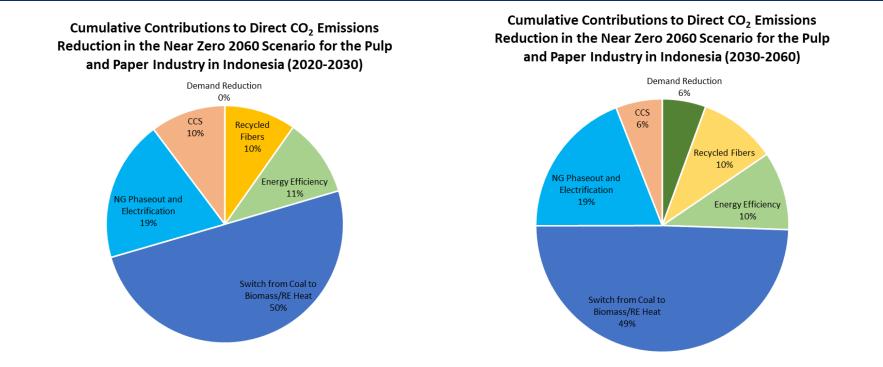
- Indonesia is a main pulp and paper producer in the world, accounting for 5% of the world's wood pulp production by 2020.
- Total pulp production has been increasing 6% per year on average from 2015 to 2021.
 - 85% of total pulp production comes from chemical wood pulp.
- Total paper production grew 3% per year on average from 2015 to 2021.


Source: FAO 2023a.

Pulp Production in Indonesia (2015-2021)

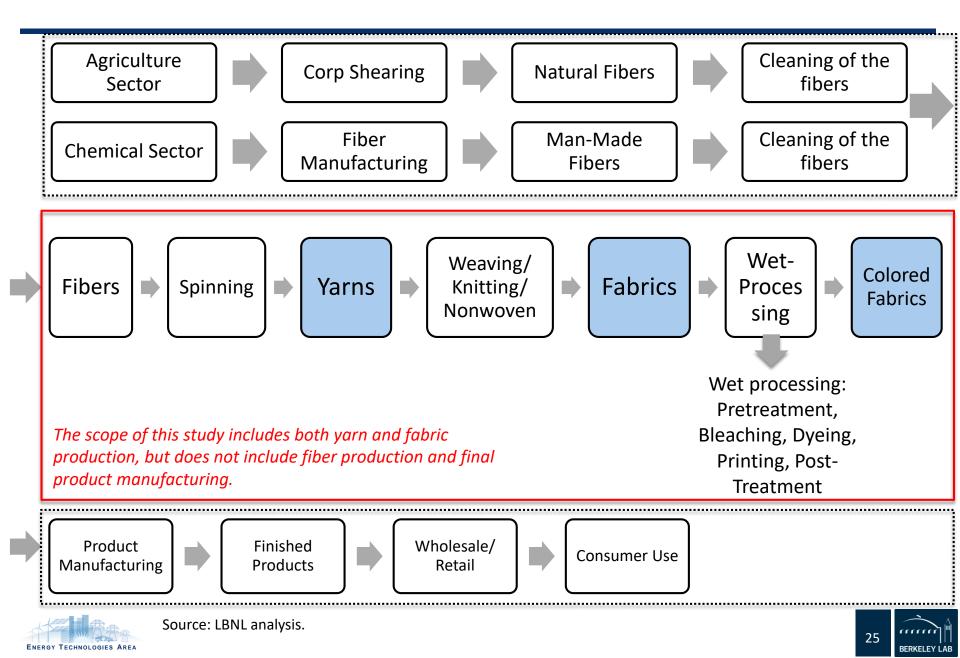
ENERGY TECHNOLOGIES AREA



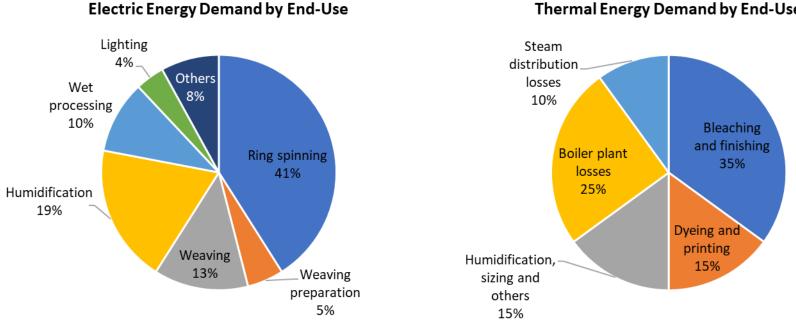


Achieving Near Zero Direct CO₂ emissions by 2060 in the Indonesian Pulp and Paper Industry

Achieving Near Zero Direct CO₂ emissions by 2060 in the Indonesian Pulp and Paper Industry



- Electrification and renewable heating technologies play the most important role in reducing CO₂ emissions in the Indonesian pulp and paper industry, in both the near term (2020-2030) and the mid-to-long term (2030-2060), accounting 69% and 68% of total cumulative CO₂ emission reduction potentials during the respective periods
- Increased use of recycled fibers to produce pulp, and continued strengthen of energy efficiency can each deliver 10% of CO₂ emission reductions by 2030
- Demand reduction measures to improve material efficiency through digitalization and use of multimedia accounts for 6% of total cumulative CO₂ reductions from 2030-2060


ENERGY TECHNOLOGIES AREA

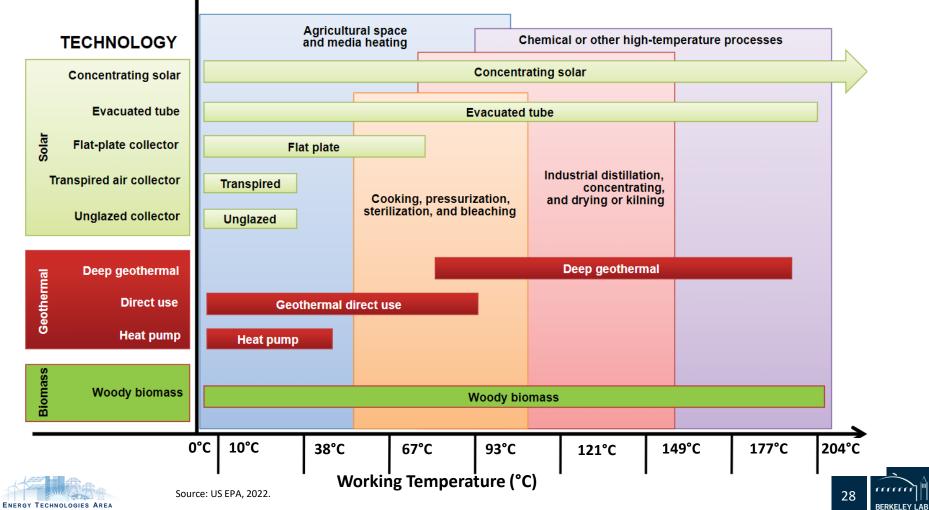
Textile Industry and Scope of this Analysis

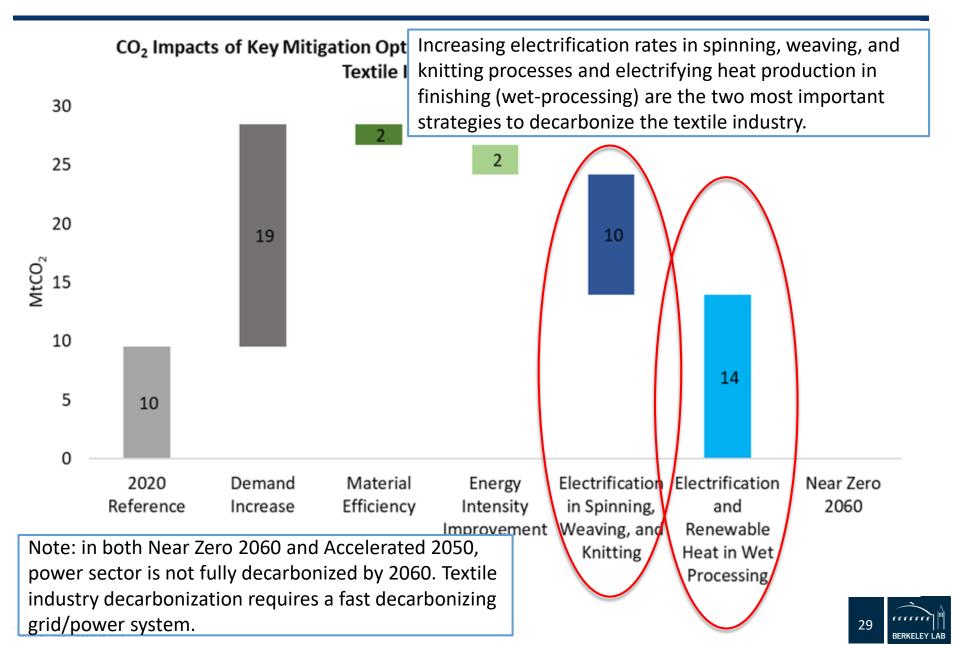
Typical electric and thermal energy demand by end-use in a typical integrated textile plant

Thermal Energy Demand by End-Use

Sources: Palamutcu 2015; Hasanbeigi and Price 2012; Sathaye et al. 2005.

Commercialized and emerging electrotechnologies


Technology	Maturity	Cost	Industry applications
Electric boiler	Commercial (>200°C)	Low-Medium	Many industries, with steam demand
Hybrid boiler	Commercial (>200°C)	Medium	Many industries, with steam demand
	<100°C: commercial	Low	
	100-150°C: emerging	Medium	
Heat pump	>150°C: R&D	High	Many industries, with corresponding temperature needs
Infrared drying	Commercial Commercial (<1000°C)		site fossil fuel heat production with on technologies, e.g., switching
Resistance heating			
Extrusion porosification	Commercial	from coal-i	ired boilers to industrial heat
Induction heating	Commercial (<1000°C)	pumps, can also reduce combustion losses and improve energy efficiency.	
Friction heating	Commercial	inprove en	iergy efficiency.
Ohmic drying Microwave, radiofrequency	Emerging Emerging		, it can also bring other co-benefits, ed maintenance cost, reduced
Pulsed electric field	Emerging	insurance c reduced air	cost, improved productivity, and
Ultrasound	Emerging	reduced all	
Pulsed light	Emerging		la atuifi aati an ala aydal la ayaana a
Ultraviolet	Emerging		electrification should be pursued
Electroslag, vacuum, plasma	Emerging	together with fast decarbonization in the	
Source: Author analysis.		power sect	or.



Renewable Heat Technologies

- □ Solar, geothermal, and biomass-based renewable heat technologies:
 - Concentrated solar
 - Evacuated tube solar
 - Deep geothermal

CO₂ Impacts of Key Mitigation Options under the Near Zero 2060 Scenario for the Textile Industry in Indonesia

- It is technically feasible to achieve near-zero emissions in Indonesia's industrial sector by 2060, the target year of carbon neutrality in Indonesia's updated NDC. Achieving net-zero emissions by 2050, as aspired in the government goals, will require extraordinary efforts and a much more accelerated pace of adoption of low-carbon technologies.
- To achieve announced national economic development targets, it would require significant growth in the industrial sector, which provides the foundational materials and infrastructure for urbanization, improved living standards, and other industry (renewables, batteries, EVs) development that is necessary for energy transition.
- Industrial capacity expansion is expected in several key industries, e.g., iron and steel, driven by domestic construction demand and transfer of industrial capacity from other Asian countries (China, Japan, and South Korea, etc.). However, the current industry development is not on track with the Near Zero 2060 Scenario.
- Industry investment and policy decisions made today have important implications for 2050 and 2060. Industry development can be met by clean, low-carbon, and cost-effective technologies. It is urgent and critical to develop policy strategies and create the right market conditions to speed up the adoption and scale up.

- Indonesia needs to consider a portfolio of technologies and measures for industry decarbonization. Different strategies play different roles in specific industries.
 - Iron and steel: transition to scrap-EAF (near term), followed by H₂-DRI-EAF (mid-to-long term); while at the same time pursue energy efficiency and material efficiency. Very limited role for CCS.
 - Cement: increase use of supplemental cementitious materials (SCMs), implement material efficiency and energy efficiency measures (near term), zero-carbon fuels (mid-to-long term); conduct R&D and pilots on CCS, but caution on cost and verifiability (mid-to-long term).
 - Ammonia: improve energy efficiency (near term), switch to zero-carbon (H₂, biomass) feedstocks (mid term); implement pilots on methane pyrolysis and CCS (long term).
 - Pulp and paper: improve energy efficiency, implement material efficiency and recycling (near term); switch from coal to other renewable sources in papermaking (mid term)
 - Textile: fully electrify spinning, weaving, and knitting processes (near term); adopt industrial heat pumps and other renewable sources in wet processing (mid term)

- National strategies on carbon-intensive materials (e.g., steel, and cement), green energy carriers (e.g., hydrogen and ammonia), and cross-cutting technologies (e.g., industrial heat pumps, and CCS) need to be developed.
 Coordinated approach on infrastructure development (pipelines, storage sites, power transmission and distribution systems) and utilization is necessary.
- Industry decarbonization requires a fast-decarbonizing power sector. Near zero emissions in industry requires access to clean, low-cost electricity.
 Policies that support industry to connect to renewable power or develop its own renewable electricity renewables are very important.
- Industry decarbonization is inevitable but multifaceted. It has the potential to develop new industry, grow local economy, reduce air pollution, and be more competitive in global trade. It is critical to involve all stakeholders in this process to minimize negative impacts to local communities, and leverage this opportunity to reduce inequality.

Thank you!

Comments and Questions?

Hongyou Lu

hylu@lbl.gov

650-804-6685

Lawrence Berkeley National Laboratory

