

Accelerating Decarbonization of Indonesia's Iron and Steel Industry in Ensuring Sustainable Infrastructure Development

Presenter:

Dr. Farid Wijaya Senior Analyst at IESR March 20, 2024

Status of Iron and Steel Industry in Indonesia

The performance of the industrial sector is the main support for the national economy and the second contributor to GHG emissions

In 2022, industry activities contribute the 2nd highest emissions of **430 MtCO₂**, next to power generation sector.

Year

- According to the BaU, Indonesia's emissions will double in 2050.
- Each country should reduce emissions from energy generation-usage, IPPU and waste.

Emission Trends of Industry Sector in Indonesia

GHG emissions and global warming

Source: www.twinkl.com.au

As of late 2022, the global average temperature had **risen by 1.2°C** from pre-industrial levels, leaving the carbon budget necessary to stay within 1.5 - 2°C with implementation of decarbonization efforts.

Source: The Climate Book, 2022

GHG Emissions of Industry Subsectors Upstream Process, 2020

- Iron and steel are the primary contributors to GHG Emissions of industry subsectors.
- Decarbonization of the industrial sector, including the iron and steel industry, needs to be carried out for industrial, economic, environmental and social sustainability.

Source: IESR-IETO, 2024

Significance of decarbonizing the iron and steel industry

Iron and Steel Industry Sector Indicators (2022)	Indonesia	Clobal
Market size	-	≅ USD 1.7 trillion
Export value	≅ USD 28.8 billion	≅ USD 563 billion
Share of total trade	-	≅ 2.38%
Employment	Over 300 thousand people	Over 6 million people
Share of GHG emissions (upstream)	≅5%	≝ <u>7-9%</u>
Share of CO ₂ emissions (upstream)	≅ 20-30 MtCO ₂ /year	<u>11%</u> ≅ 3.7 GtCO ₂ /year
Average CO_2 emission intensity (tCO ₂ /t steel production) in 2018	<u>0.8-3.9</u>	<u>1.81</u>
Average CO_2 emission intensity (tCO ₂ /t steel production) in 2019		<u>1.82</u>
Average energy intensity (GJ/t crude steel cast) in 2020	12.1	<u>20.38</u>

Source: IESR Analysis adapted from Carbon Brief, 2023; GEI, 2023; GP. 2023; PR. 2023; GNW, 2023; GVR. 2023; OEC. 2024; WS. 2024; Kontan, 2023; CT. 2020; CT. 2022; IISIA, 2023a; IESR-IETO, 2024; GEM, 2022

Historical production and emission projection of Indonesia's iron and steel industry

Current status production

66

2016

2017

Steel Production

20

15

10

6.2

1.3

2015

Emission (MtCO2/t steel)

industry tree^{**} to 2060 Steel Export — Apparent Steel Consumption (million tonnes/year) Emission (MtCO2/t steel) Steel Demand (million tonnes/year) 600 250 16.6 17.4 15.5-14 14.4 200 Emission (MtCO2/t steel) 400 10.9 150 10 ~ growth 6.7% p.a Steel Demand 5.2 5.1 200 3:3

2023

Fig 3. Steel production (left), current status (right) Projected emission of Steel industry to 2060

Source: IESR adapted from IESR-IETO, 2024; IISIA, 2023; Bloomberg, 2024 *Prediction

2019

Year

2020

2.6

2018

Source: Adapted from IISIA. 2023b ** Mol national iron and steel industry tree

Projected emission of all iron and steel

2035

2030

2040

Year

2045

2050

2055

- Potential for emissions reduction: 6.6 million Tons CO₂e (Mol estimation in 2018)
- Estimation of abatement Cost of USD 462 / Ton CO₂e (Mol estimation in 2018)

2021

2022

2023

2024

The trend in iron and steel production in Indonesia is consistently increasing with an average increase of almost 12% each year from 2015 to 2023

50

0

~207 million ton/year

2060

The urgency of decarbonizing the iron and steel industry

Industrial competitiveness and sustainability

	International			Domestic		
Driver	Paris agreement, NDC etc.	Regulations of green product and carbon limit for export: CBAM, SBTi, ESG, ISO, etc.	International carbon market and emissions trading system	Support the country's economy with green procurement, product and services	Mitigation is needed due to climate change vulnerabilities	Healthy environment, ecology preservation, good lifestyle
Critical issue	International conventions	New green or carbon protection policy	Carbon exchanges and sustainable capital markets	Priority industry	Material and energy supply vulnerabilities	Green lifestyle

Fig 4. The urgency of decarbonization of the iron and steel industry, reasons and driving factors

Source: IESR Analysis adapted from Mol, 2023a and many sources Institute for Essential Services Reform | www.iesr.or.id

Iron and Steel Industry Scenario and Decarbonization Opportunities in Indonesia

Study Scope

- The study scope is limited to:
 - upstream processes in steelmaking industry, where the highest energy consumption (thermal and electricity) is required. It includes steelmaking process until steel rolling
 - Scope 1 and 2 emission with consideration only from energy use and IPPU
- This scenario was modelled from the bottom up approaches using LEAP.
 Some considerations include production technologies, sizes and ages of production facilities, energy and material inputs, and energy intensity levels
- For modelling the steel production forecast, some considerations include
 - historical steel production,
 - forecasted national infrastructure growth (steady demand, <u>annual growth 2.3% p.a</u>), and
 - expected infrastructure growth compared to global level (high demand, <u>annual growth 3.3% p.a</u>)

Source: IESR-LBNL, 2024

2020

2030

2040

2050

2060

Technologies and measures of the key to decarbonizing the iron and steel industries

Material Efficiency	Energy Efficiency	Fuel Switching	Low-carbon Technologies	ccs/ccus
 Improving design, construction, product yield with circular principles Extending product lifetime Lightweight and higher strength materials Alternative materials and construction 	 Improving efficiency of thermal and electrical energy Smart energy management Integrative design/system optimization 	 Onsite renewables Increasing electrification production process Alternative reducing agent (H₂ , biomass) Hydrogen DRI Molten Oxide Electrolysis Electrowinning aqueous Electrowinning – molten salt 	 Increasing use of Scrap-EAF, DRI-H₂ based DRI while decreasing BF-BOF and natural-gas-based DRI 	 CCU technologies: carbon to methanol, carbon to chemical Post-combustion CCS on BF CCS on DRI process CCS on smelting reduction process

CO₂ emission impact of key decarbonization options for the iron and steel industry in high heat - upstream process

- The main reduction contributor comes from power sector decarbonization and transition towards low carbon technologies.
 With Scrap-EAF production share is expected to grow to 70% and BF-BOF technology has successfully been phased out by 2060.
- Accelerated 2050 scenario relies more to material efficiency and fuel switching and less to power sector decarbonization

National Effort in Decarbonizing Industry Sector and Readiness of Iron and Steel Industry toward Decarbonization

Industry decarbonization has been a focus in national energy transition plan despite the absence of sectoral roadmap

2021 - 2025	2026 - 2030	2031 - 2035	2036 - 2040	2041 - 2050	2051 - 2060
 Utilization of Solar PV, waste to energy, co-firing in coal-fired power plants Development RE electricity generation from wind and biomass Start in implementation of <u>Energy</u> <u>Management and</u> <u>Conservation in</u> <u>Industry</u> 	 Battery Energy Storage System (BESS) adoption Increasing biofuels to 40% in Industry and transportation Increasing the use of natural gas in the industry Widespread implementation of carbon credits Gradual shift from fossil subsidies to RE subsidies 	 Increasing capacity of RE power plants RE Green H₂ adoption 11 GW RE thermal power plant in 2035 Implementation of CCS/CCUS in Industry First commercial nuclear power plant operation 	 Nuclear use for electricity generation Variable Renewable Energy (VRE) of solar and wind from 2037 <u>CCS/CCUS for the</u> <u>steel industry</u> Low carbon fuel for shipping Electricity in industrial sectors: increasing share and efficiency 	 <u>Green H₂ and NH</u>, <u>adoption for</u> <u>replacing natural</u> <u>gas in industry -</u> <u>high temperature</u> <u>processes</u> More electricity is generated from RE than fossil energy <u>Electrification in</u> <u>steel Industry</u> 	 Utilization of CCS/CCUS in Industry 13 MMTCO₂e Utilization of H₂ gas for electricity generation Power generation GHC emission reach zero (NZE) Emissions of industrial - transportation sectors of 129 MMTCO₂e

Is the iron and steel industry on the right track to decarbonize?

Concept		Implementation		
Awareness for Decarbonization	75-100%	Energy Efficiency	0-25%	
GHG and Energy Accounting	75-100%	Fuel Switching to Green Fuels	0-25%	
NZE target	75-100%	Material Efficiency	0-25%	
Net Zero Strategy	75-100%	Process Improvement	75-100%	
Net Zero Strategy Implementation	25-50%	Electrification and RE Electricity	25-50%	

- The critical issue is that the industry has **limitations access** to
 - Financing,
 - Optimization time,
 - Alternative fuels stock
 - Technological innovation and knowledge, as well as

Expert personnel
 As the industry must
 continue to operate to gain
 profits for the sustainability
 of the industry

Source: IESR analysis adapted from IESR desk sturdy, IESR-LBNL 2023; WRI Indonesia, 2023

No iron and steel industries certified with green industrial standard

Raw Material

BOF Minimum 30%

Renewable Energy (RE)

There is a plan to use RE at a minimum of 3% of the total electrical energy consumption for lighting in the production area.

Waste

There are recycling and/or reuse activities for solid waste

- There are 316 iron and steel companies in 2023, up from 43 in 2013
- The green industrial standard for steel industry is newly established and limited for coated sheet steel (Mol regulation No.12/2023 for SIH 24102.2:2023)
- 10% of medium and large industrial companies have received green industry certificates while there is no iron and steel company has yet obtained it
- Source: Mol. 2023a: Bappenas. 2023: Mol-Sisih. 2024

Benefits of decarbonization for economic growth and key recommendations to accelerate the implementation

Prospects Industrial decarbonization for economic growth

Drivers for Industrial Decarbonization

Main Drivers: International efforts and agreements for reducing GHG emissions

Socio-economic Drivers:

- Turning the economic wheels and fostering economic growth (Golden Indonesia by 2045 as advanced country)
- 2. Achieving National Self-sufficiency and security in the industrial net zero emission (NZE) journey
- To protect the domestic supply chain and future economy (increase Circular and Green Economy Index)
- 4. Enhancing **export competitiveness** for the global market which is becoming more conscious towards green practices

Targets

Targets

- 1. **Sustainability** lower emission intensity of Indonesian industries, green product and services
- 2. High resources efficiency, minimum emission and waste and cost saving
- 3. Market expansion and increased sales of green products
- 4. Job creation the Indonesian renewable energy sector is projected to bring 3.2 million green jobs

Efforts

Lower emissions, more sustainable, and more competitive industries

Efforts

- 1. Building a green industrial ecosystem within the framework of regulations and standards
- 2. Building green Industry through green energy, green process, green product and services and its supporting regulations based on sectors
- 3. Roadmaps by individual industries and associations (still limited to few sectors), and the government (on progress)

Source: IESR Analysis, 2023 adapted from WPI Economics, 2023; DOE, 2023

Key Recommendations

- 1. Completion of the industrial decarbonization roadmap by the Mol by the end of 2024 or sooner
- 2. Strengthening reporting and data collection on the implementation of
 - a. Government Regulation No. 28/2021 and
 - b. Minister of Industry Regulation No.2/2019,
 - c. Publication of a sustainability report for transparency and information access especially reporting on energy use, IPPU, waste and emissions produced by industry which is still in voluntary basis
- 3. It is imperative to establish targets, especially for industries that are energy-intensive, including the steel and iron industry,
 - a. Standardization of production processes (green industry standards) including energy intensity threshold for energy-intensive industries
 - b. Planning, Targets and Realization of RE Provision, especially Biomass supply, and use of Solar PV.
 - c. Accompanied by a mandatory policy framework

Thank You

Accelerating Low Carbon Energy Transition

Any follow up questions?

-4-

Kindly send email to farid@iesr.or.id

f iesr.id

@www.iesr.or.id

iesr.id

() IESR

in iesr

Reference

- 1. Bappenas, 2023. Arah Kebijakan Ekonomi Hijau & Sirkular di Indonesia. Disampaikan pada Dialog Kebijakan Implementasi Ekonomi Hijau dan Sirkular untuk Pengembangan Industri Hijau di Indonesia
- 2. Carbon Brief, 2023. Steel industry makes pivotal shift towards lower carbon production
- 3. <u>CT. 2020</u>. CLIMATE TRANSPARENCY REPORT COMPARING G20 CLIMATE ACTION AND RESPONSES TO THE COVID-19 CRISIS 2019
- 4. <u>CT. 2022</u>. CLIMATE TRANSPARENCY REPORT: COMPARING G20 CLIMATE ACTION 2022
- 5. <u>GEI, 2023</u>. Steel climate impact international benchmarking energy co2 intensities
- 6. <u>GEM, 2022</u> Pedal to the Metal 2022..
- 7. <u>GNW. 2023</u>. Iron And Steel Global Market Report 2023
- 8. <u>GP. 2023</u>. Indonesia's steel industry a comprehensive overview
- 9. <u>GVR, 2023</u>. Iron steel market
- 10. IISIA, 2023a. Seaisi Travelling Seminar 2023 pentingnya industri baja menerapkan green steel technology
- 11. IISIA, 2023b. Resource Efficiency Principles and Practices in the Iron and Steel Sector to Support the Implementation of Green and Circular Economy Policies in Indonesia, Disampaikan pada Policy Dialogue on the Implementation of a Green and Circular Economy for the Development of Green Industry in Indonesia
- 12. IESR Analysis refers to Analysis by <u>DR. Farid Wijaya</u>, Senior Analyst in IESR and IESR Team for presentation of: Indonesia's Iron and Steel Industry Scenario and Decarbonization Opportunities. 20 Maret 2024.
- 13. IESR-LBNL, 2024. Industry decarbonization roadmaps for indonesia
- 14. <u>IESR-IETO, 2024</u>. Indonesia Energy Transition Outlook IETO 2024
- 15. <u>Kontan, 2023</u>. Industri baja domestik diproyeksi masih tumbuh positif
- 16. MEMR, 2023a. Strategy Hydrogen National.
- 17. MEMR, 2023b. Transisi Energi Indonesia disampaikan pada Dialog Perencanaan Transisi Energi Berbasis Kewilayahan

Reference

- 17. Mol, 2023. Presentasi: Percepatan Dekarbonisasi dan Nilai Ekonomi Karbon untuk Pencapaian ENDC di Sektor Industri. Disampaikan pada FGD Boosting Indonesian Industry's Net Zero Ambition through Energy Transition & Climate Finance Solutions
- 18. Mol-Sisih, 2024. Rekapitulasi.
- 19. <u>OEC, 2024</u>. Iron steel
- 20. <u>PR. 2023</u>. Iron and steel market
- 21. The Climate Book, 2022 by Greta Thunberg
- 22. <u>WS, 2024</u>. Key messages
- 23. <u>WPI Economics, 2023</u>. Economic benefits of industrial decarbonisation
- 24. WRI Indonesia, 2023. Disampaikan pada Focus Group Discussion (FGD): Boosting Indonesian Industry's Net Zero Ambition through Energy Transition & Climate Finance
- 25. <u>WWF, 2021</u>. Difference between 1.5 and 2.0C warming