

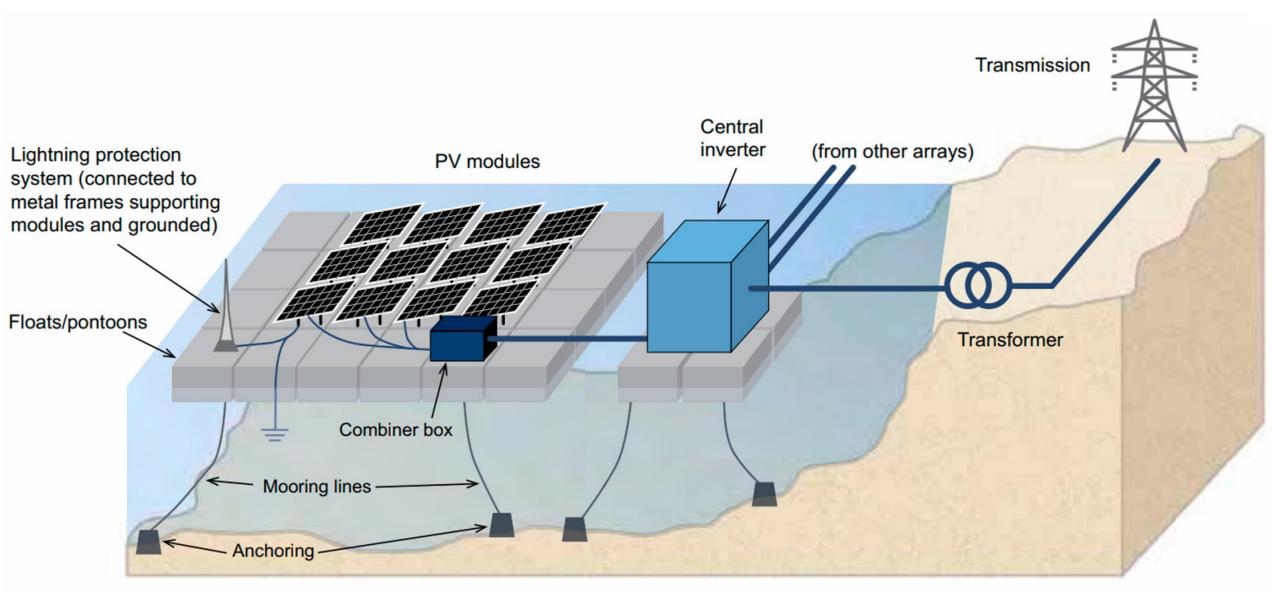
"Potensi PLTS terapung di Indonesia"

Presentation for disampaikan pada Webinar "Surya Mengapung Wujudkan Transisi Bagi Indonesia"

David F Silalahi, PhD 100% Renewable Energy Group, The Australian National University https://re100.eng.anu.edu.au/ Jakarta, 28 Mei 2025

What is Floating Solar PV (FPV)?

Solar PV sited on waterbodies such as lakes, reservoirs, and water treatment ponds.


Some Co-Benefits of FPV:

- Reduced land use
- Increased panel efficiency
- Water conservation
- Reduced solar PV curtailment (when hybridized with hydropower)

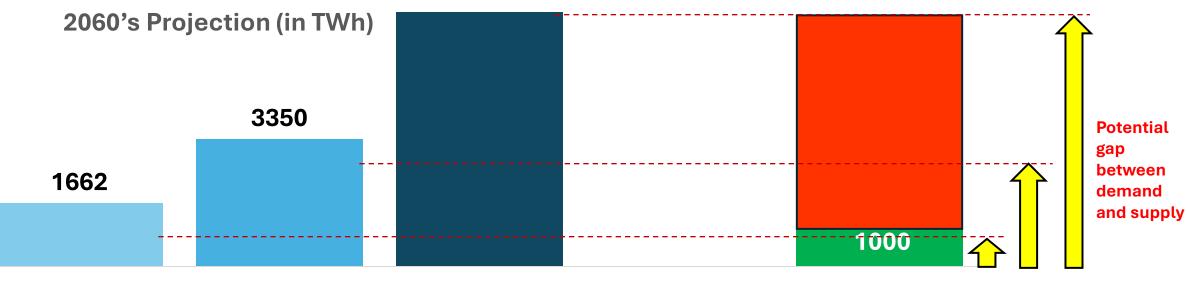
Source: Gadzanku et al. 2021

Connections to Other Transmission Floating Solar PV Arrays Lightning Protection System Central Inverter (Grounding for Metal PV Module Mounting Hardware) PV Modules (Floating or Shore Based) Transformer Floats or Pontoons Figure. Schematic of stand-alone **FPV** system Anchoring -Underwater Cables Combiner Box Mooring Lines Internal Interconnection Cables Floating Solar PV System Hybrid System Substation Transmission System Figure. Schematic of hybrid FPVhydropower system Hydropower Dam-Source: Lee et al. 2020 USAID USAID FROM THE AMERICAN PEOPLE 4 ared outside Al

Advanced Energy Partnership for Asia

Source: Solar Energy Research Institute of Singapore (SERIS) at the National University of Singapore.

Inovasi sederhana panel surya terapung



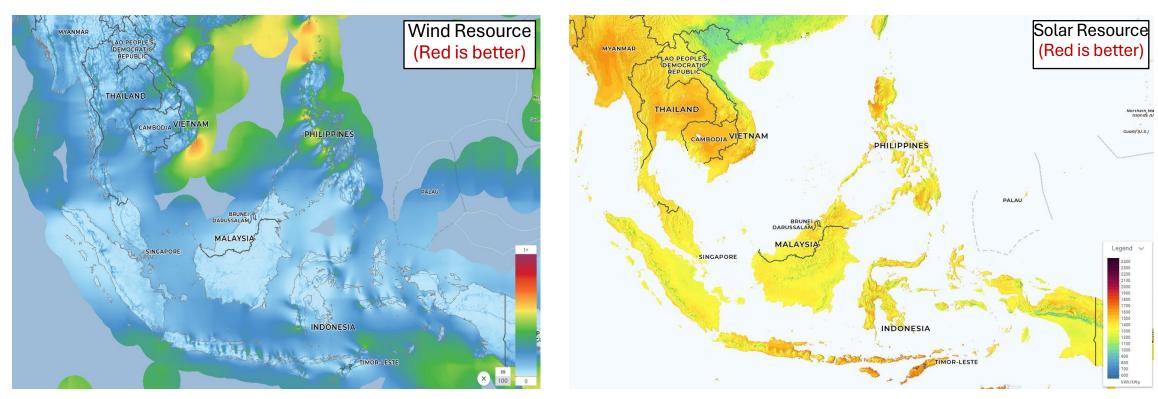
Indonesia's Projected Energy Demand

6700

Electricity Demand - Electricity Demand - Electricity Demand -RUKN (5 MWh per 10 MWh per capita 20 MWh per capita capita) Hydro, geothermal, ocean, wind, bio

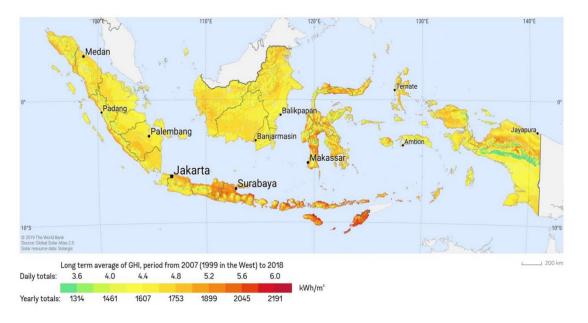
Supply from hydro, geothermal, ocean, wind, bio (non-solar) is <u>not adequate !</u> Indonesia is likely to rely on solar energy!

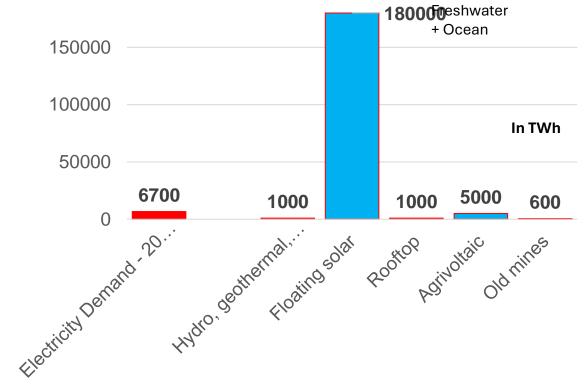
Where to install the solar panels?



Indonesia is likely to rely on solar energy!

Where to install the solar panels?

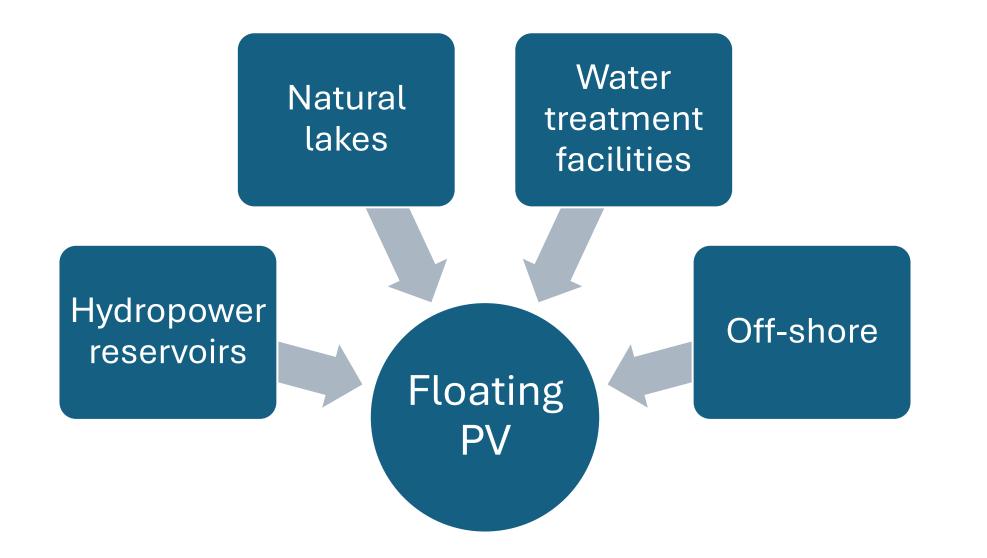

Solar and Wind Resources in Indonesia



Source: https://globalwindatlas.info/en/

Source: https://globalsolaratlas.info/map

Indonesia's Vast Solar Energy Potential



Indonesia's GHI: 4.8 kWh/m²

Source: Energies 2021, 14(17), 5424; https://doi.org/10.3390/en14175424

Floating PV Development Strategy

Faktor yang Mempengaruhi Keandalan PLTS:

- 1. Pemilihan Lokasi yang Tepat
- 2. Perawatan dan Pembersihan Rutin
- 3. Pemilihan Komponen Berkualitas
- 4. Monitoring Kinerja Sistem
- 5. Cadangan Energi dan Sistem Kontrol Otomatis

Floating solar PV – risk to be managed

Japan's largest PV power plant, inaugurated by Kyocera in March 2018 at the Yamakura Dam in Ichihara City.

Kyocera's 13.7 MW floating project at the Yamakura Dam was damaged by 120mph winds the typhoon brought to the coastal city of Chiba.

Source: PV-Magazine, 2019

Damaged floating solar PV

In India's state of Madhya Pradesh, the world's largest floating solar plant at Omkareshwar dam suffered severe damage during a storm on April 9. Footage captures the destructive impact as strong winds uprooted and damaged solar panels, disrupting operations.

The damaged floating plant is one of three developed near the dam. The storm that damaged it had winds reported at 50 kph, which is just over 31 mph.

A few days after it began operations.

Read more at: <u>Times of India</u>

NEWS / CITY NEWS / INDORE NEWS / Storm Damages World's Biggest Floating Solar Plant In Madhy...

Storm damages world's biggest floating solar plant in Madhya Pradesh

TNN / Updated: Apr 15, 2024, 23:02 IST

🗇 SHARE 🔂 🗛 FOLLOW US 付

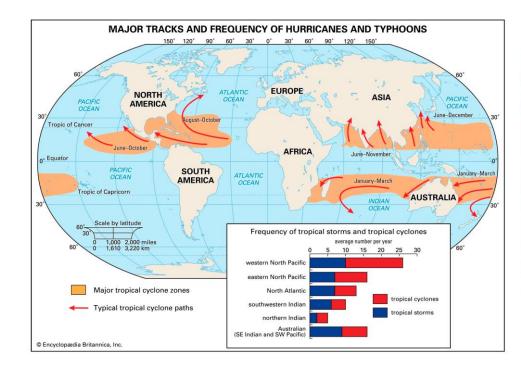
NHDC assesses damage to the floating solar plant at Omkareshwar Dam after a storm. Despite setbacks, the plant is expected to resume power production, aiming for 100 MW by end-April. NHPC, employees, and various villages impacted.

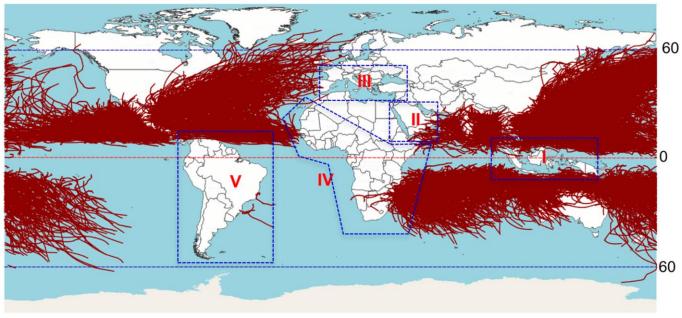
The floating solar plant at Omkareshwar Dam after a storm

INDORE: The world's largest floating <u>solar plant</u> at Omkareshwar Dam has been badly damaged in a storm.

Narmada Hydroelectric Development Corporation (NHDC) has started evaluation of the damage, but is confident the plant will be back to producing power soon. Part of the plant went operational last week, and this is the section that took a hit.

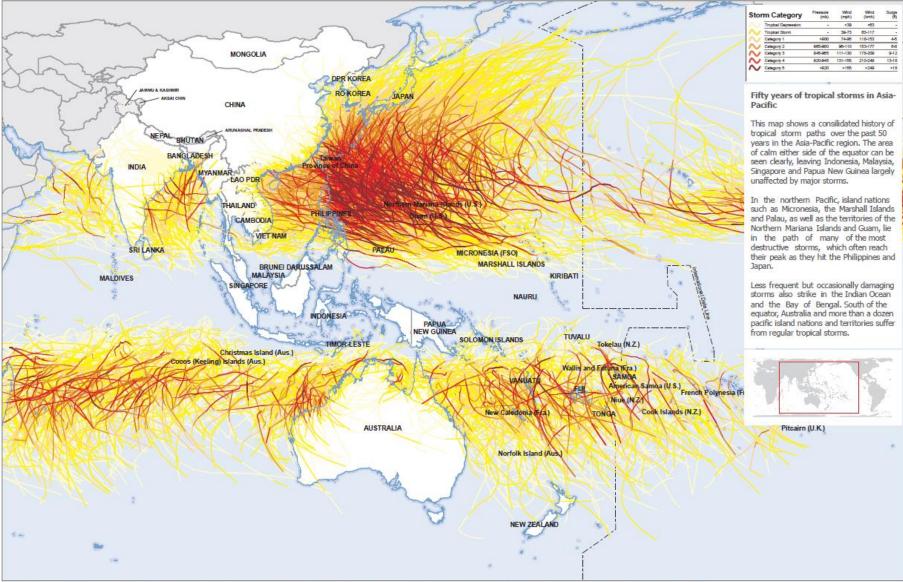
The floating plant, built on the backwaters of


Omkareshwar Dam, was ready for launch but it was slammed around by 50kmph winds in a summer storm that hit on Tuesday.


<u>Video</u>

POTENSI PLTS TERAPUNG "OFSHORE" DI INDONESIA

Historical tropical storm around the globe



40 years of data (1980–2020) of historical tropical storm tracks (represented by red lines)

Last 50 Years Tropical Storms in Asia-Pacific: 1966 - 2017

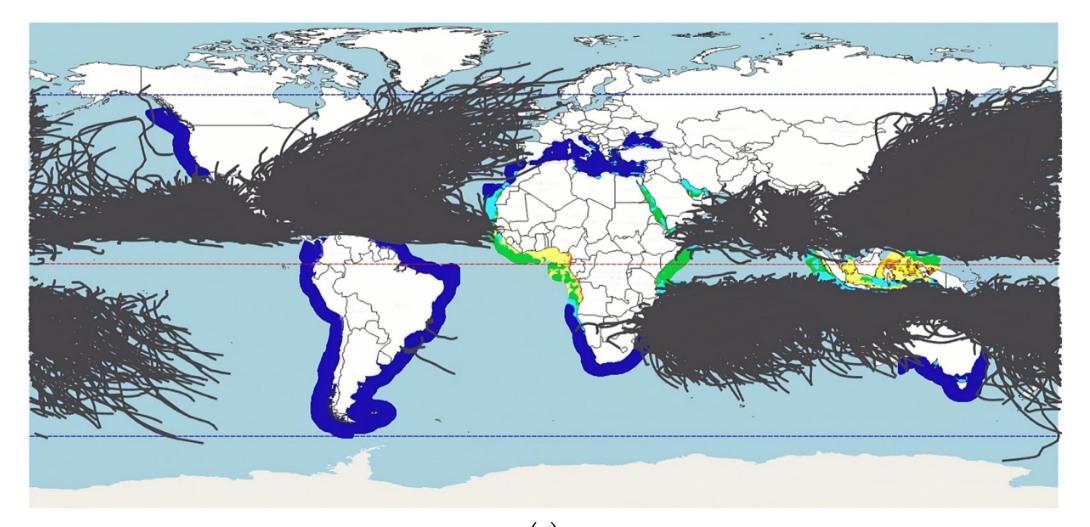
OCHA

Disclaiments: The boundaries and names shown and the designations used on this map do not imply official endowerret or acceptance by the United Nations | Feedback: colm-mapQiun.org, www.unotha.org/namp | Greeton dek 18.January 2018 Sources: UN Cartographic Section, UNISYS | Map Ref. OCH4_HOAP_StamTacka, y^{*}_100116

https://reliefweb.int/map/world/last-50-years-tropical-storms-asia-pacific-1966-2017

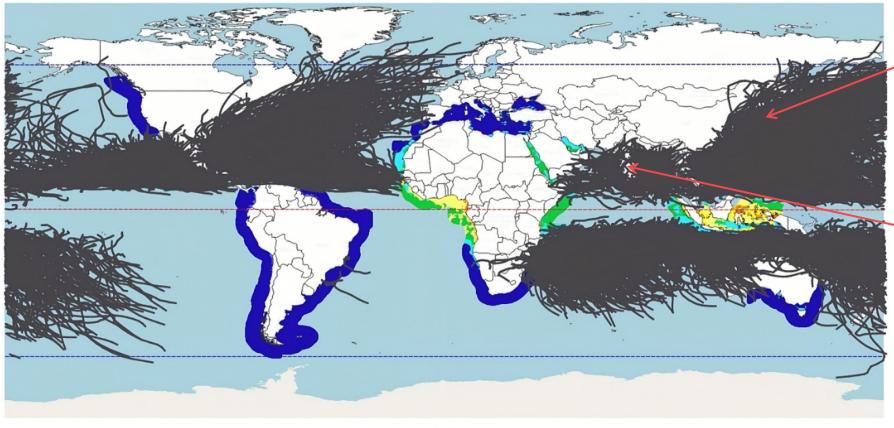
Static Freshwater bodies

- No waves
- Limited wind
- Inner waters
 - Small to medium (1 m) waves
 - Water areas of 1-3 km²
- Larger inner waters
 - Medium waves (>1 m)
 - Area > 3 km²



- Nearshore FPV
 - Reasonably sheltered area
- Significant wave height < 2-3 m
- Offshore FPV
 - Unsheltered water
 - Significant wave height > 2-3 m

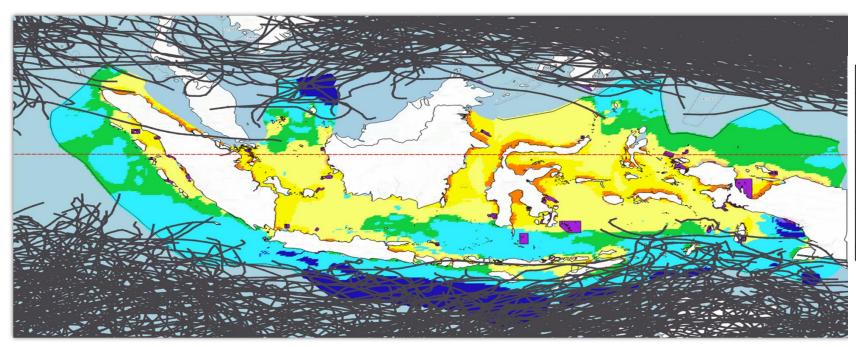
đ			
2	ssc	Description	Significant Wave Height (m)
ñ	0	Calm (glassy)	0
	1	Calm (rippled)	0-0.1
odes	2	Smooth	0.1-0.5
	3	Slight	0.5-1.25
5	4	Moderate	1.25-2.5
D	5	Rough	2.5-4
lale	6	Very rough	4-6
กี	7	High	6-9
σ	8	Very high	9-14
Se	9	Phenomenal	>14


Figure 2. Categorization of FPV as suggested by Solar Power Europe [1] and the WMO sea state codes [4].

Mapping potential sites for offshore floating solar PV

(c) 40 years of data (1980–2020) of historical tropical storm tracks (represented by grey lines)

Mapping potential sites for offshore floating solar PV



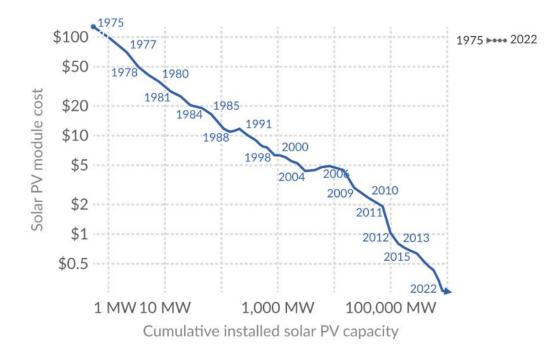
2019, storm hit floating solar PV (14 MW) at Yamakura Dam, Japan

2024, floating

solar plant at Omkareshwar dam, Madhya Pradesh, India, suffered severe damage during a storm on April 9

Indonesia's maritime floating solar PV potential

Wave height	Wind speed												
wave neight	0 - 5 m/s	5-10m/s	10 - 15m/s	15 - 20m/s	> 20m/s								
1	0.1	140	635	0.1	1								
0 - 4 m	0.02	28	127	0.02									
	0.03	37	167	0.03									
		22	1,576	71	3								
4 - 6m		4	315	14									
151 84516		6	414	19									
		2	970	752	19								
6 - 8m	(H)	0.3	194	150									
		0.4	255	198									
			161	914	4								
8 - 10m	-	-	32	183									
			42	240									
>10m	-	-		348	165								

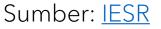

Note: In each cell, the numbers are (top to bottom): (i) area (thousands of km2); (ii) potential solar power (TW); and (iii) potential annual solar generation (thousands of TWh per annum).

- Red areas are best (calmer) followed by orange, yellow, and green, while blue areas are the stormiest.
 Pale blue corresponds to maritime areas far from land that were not considered in this analysis.
- Purple areas represent marine protected areas.
- The dark gray line shows the history of tropical storms.

PERBANDINGAN KEEKONOMIAN ENERGI FOSIL DAN SURYA

Dengan asumsi per kg batubara dapat menghasilkan 2 - 4 kWh, harga \$100/ton. Maka biaya bahan bakar mencapai 2 - 5 cent per kWh.

Data source: IRENA (2023); Nemet (2009); Farmer and Lafond (2016) CC BY

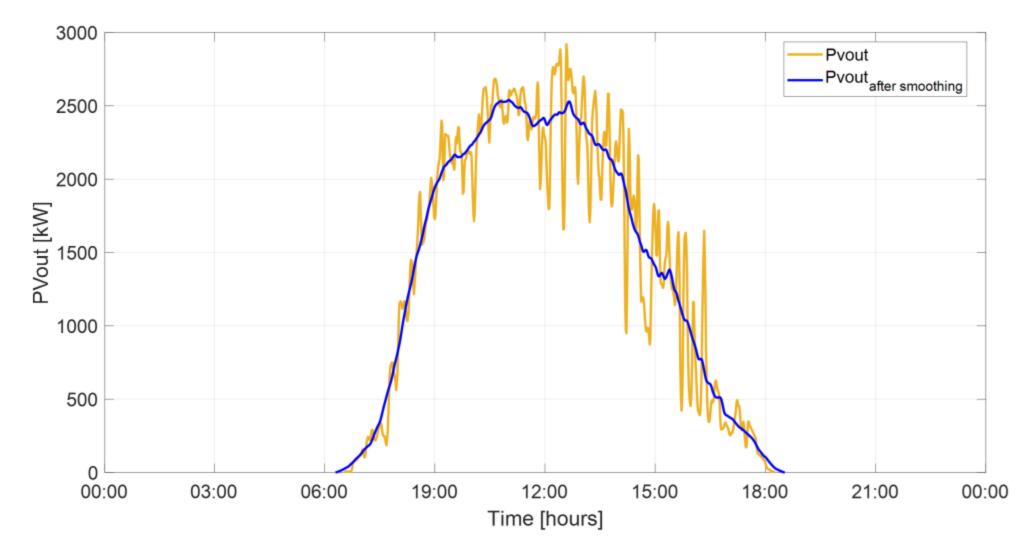

Dengan asumsi harga system PLTS terapung \$1000- 1200/kWp, biaya setara 5 – 6 cent per kWh.

Biaya pembangkit thermal dengan bahan bakar fosil sangat bergantung pada biaya operasi (gabungan biaya O&M dan bahan bakar)

12 10 8 6 4 2 0 Subc SuperC USC PLTU PLTG PLTGU PLTN PLTP PLTA PLTS PLTB • Capital cost • Operating Cost

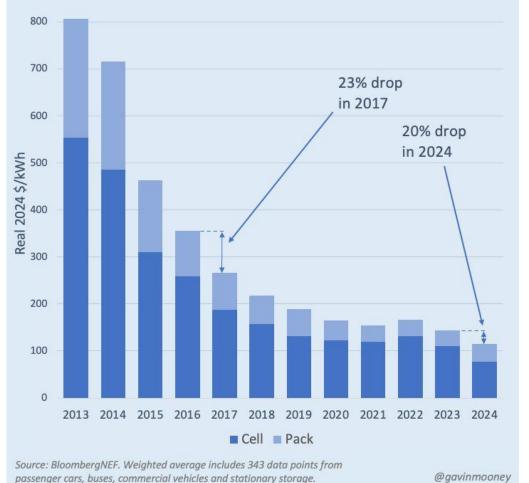
Nilai Rekomendasi Levelized Cost of Electricity (LCOE) Indonesia tahun 2020

- Kisaran LCOE pembangkit termal sangat bergantung pada operasi sedangkan pembangkit energi terbarukan sangat besar di biaya investasi awal
- Biaya operasi dapat berfluktuasi (terutama dari biaya bahan bakar), namun di Indonesia dilindungi dengan kebijakan *price cap* batubara di USD 70/ton dan gas di USD 6/mmbtu di *plant gate*
- Biaya investasi energi terbarukan memberikan tren penurunan harga yang lebih dapat diprediksi



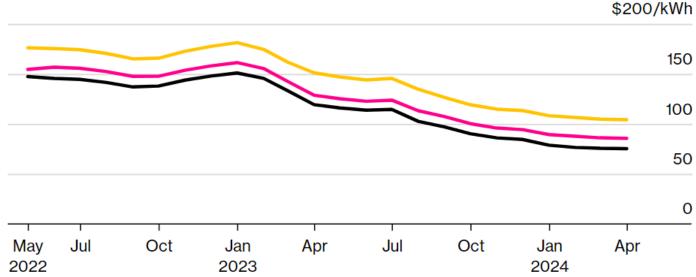
ILUSTRASI OUTPUT PLTS 1 MENIT VS 15 MENIT VS 60 MENIT

https://solargis.com/resources/blog/best-practices/4-reasons-why-pv-project-designers-need-1-minute-data

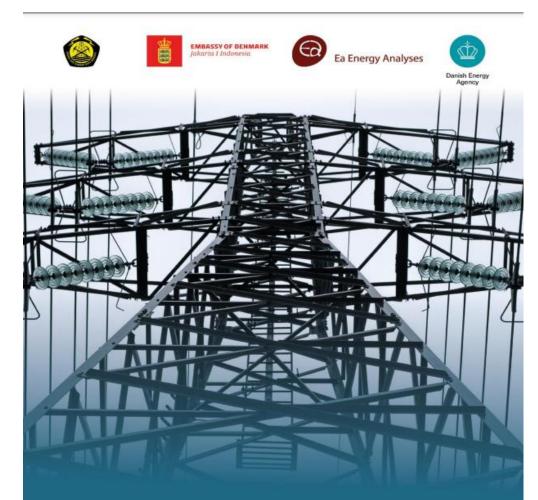

PV OUT WITH AND WITHOUT SMOOTHING

https://solargis.com/resources/blog/best-practices/4-reasons-why-pv-project-designers-need-1-minute-data

Lithium-ion battery pack prices see largest decline since 2017


Volume-weighted average lithium-ion battery pack and cell price split, 2013-2024

Lithium-ion Battery Prices Are Dropping Fast


Battery pack prices in China

Lithium iron phosphate (LFP) packs
 Nickel manganese cobalt (NMC) packs
 High nickel NMC packs

Source: BloombergNEF, ICC Battery

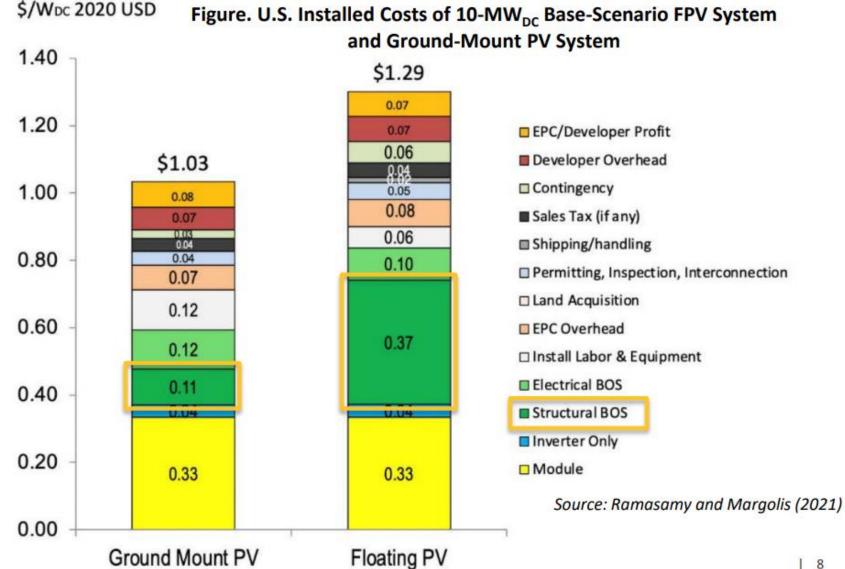
Note: NMC = Nickel manganese cobalt and includes prices for NMC111, NMC532 and NMC 622 batteries. High-nickel NMC includes NMC811, NMC955 and NCA

Technology Data for the Normal Indonesian Power Sector

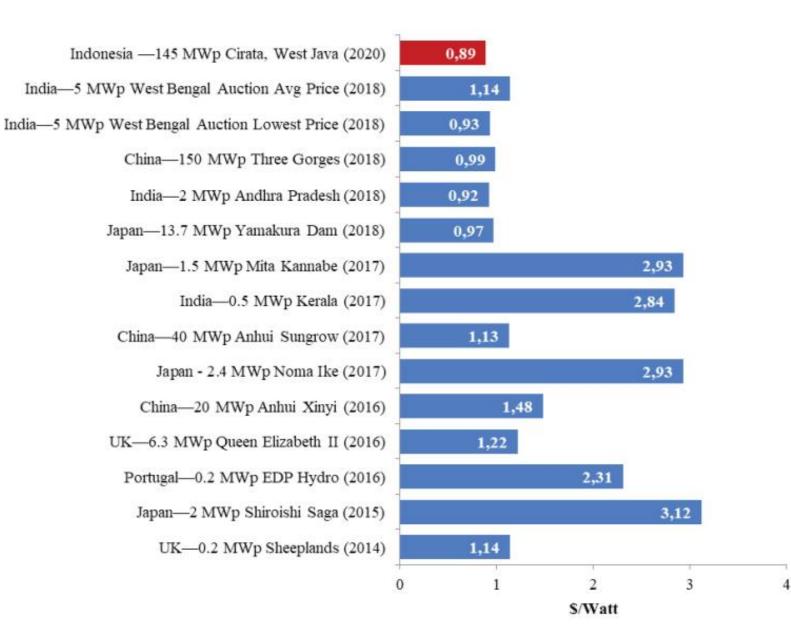
Catalogue for Generation and Storage of Electricity

Technology

Technology	PV Floating, utility-scale, grid connected												
	2023	2030	2050	Uncertai	nty (2023)	Uncertai	nty (2050)	Note	Ref				
Energy/technical data				Lower Upper		Lower Upper							
Generating capacity for total power plant (MWe)	30	80	100					A	1				
Electricity efficiency, net (%), name plate	-	-	-					В					
Electricity efficiency, net (%), annual average	-	-	-					В					
Forced outage (%)	-	-	-										
Planned outage (weeks per year)	-	-	-										
Technical lifetime (years)	27	30	35	25	30	28	42		1				
Construction time (years)	0.5	0.5	0.5	0.3	1.0	0.2	1.0		1				
Space requirement (1000 m²/MWe)	8.3	7.5	6.7	7.2	10.0	5.0	9.0	v	9				
Additional data for non thermal plants													
Capacity factor (%), theoretical	21.1	21.7	22.8	14.0	22.0	16.0	23.0	M,L	1,2,4				
Capacity factor (%), incl. outages	21.0	21.6	22.7	14.0	22.0	16.0	23.0	M,L,X	1,2,4				
Ramping configurations													
Ramping (% per minute)	-	-	-	-	-	-	-	С					
Minimum load (% of full load)	-	-	-	-	-	-	-	С					
Warm start-up time (hours)	-	-	-	-	-	-	-	С					
Cold start-up time (hours)	-	-	-	-	-	-	-	С					
Environment													
PM 2.5 (gram per Nm ³)	0	0	0										
SO2 (degree of desulphuring, %)	0	0	0										
NO _x (g per GJ fuel)	0	0	0										
CH₄ (g per GJ fuel)	0	0	0										
N ₂ O (g per GJ fuel)	0	0	0										
Financial data													
Nominal investment (M\$/MWe)	1.20	0.74	0.48	1.15	1.90	0.25	0.60	E,R,S	1,3,8,11,12				
- of which equipment	90%	86%	82%						1,3,6				
- of which installation	10%	14%	18%					W	1,3,6				
Fixed O&M (\$/MWe/year)	9,000	7,500	6,100	4,500	13,500	3,100	9,200	Q	3				
Variable O&M (\$/MWh)	0	0	0										
Start-up costs (\$/MWe/start-up)	0	0	0										
Technology specific data													
Global horizontal irradiance (kWh/m2/y)	1,700	1,700	1,700	1,300	2,200	1,300	2,200	F,M	1,2,7				
DC/AC sizing factor (Wp/W)	1.20	1.20	1.20					G	1,5				
Transposition Factor for fixed tilt system	1.01	1.01	1.01					Н	7				
Performance ratio	0.90	0.95	0.97					I	1,4,5				
PV module conversion efficiency (%)	0.21	0.23	0.26					Т	1,3,5				
Inverter lifetime (years)	12.50	15.00	15.00						1.5				


Cost Structure of Floating PV

Modeled FPV system has a higher installed cost, \$0.26/W_{DC} (25%) greater than the cost per W_{DC} of ground-mounted PV.


• Higher cost is largely due to higher structural costs related to the floats and anchoring/mooring system.

Levelized cost of electricity (LCOE) estimated to be 20% higher for FPV system compared to ground-mount PV.

Accounts for higher installed cost, higher • energy production, and lower operating and maintenance costs for FPV (but does not account for other FPV co-benefits).

Project cost of Floating Solar PV (\$/Watt)

Terimakasih

David Firnando Silalahi

https://linktr.ee/davidfsilalahi david.silalahi@anu.edu.au davidfsilalahi@gmail.com

FURTHER READING

- 100% Renewable Electricity in Indonesia, <u>https://doi.org/10.3390/en17010003</u>
- Global Atlas of Marine Floating Solar PV Potential, <u>https://www.mdpi.com/2673-9941/3/3/23</u>
- Indonesia's Vast Off-river Pumped Hydro Energy Storage Potential, <u>https://www.mdpi.com/1996-1073/15/9/3457</u>
- Indonesia's Vast Solar Energy Potential, <u>https://www.mdpi.com/1996-1073/14/17/5424</u>
- Pumped hydro energy storage to support 100% renewable energy. <u>https://iopscience.iop.org/article/10.1088/2516-1083/adaabd</u>
- Heatmaps to Guide Siting of Solar and Wind Farms. Energies 2025, 18(4), 891; <u>https://doi.org/10.3390/en18040891</u>
- A global atlas of pumped hydro systems that repurpose existing mining sites, <u>https://www.sciencedirect.com/science/article/abs/pii/S0960148124001782?via%3Dihub</u>
- A review of pumped hydro energy storage, <u>https://iopscience.iop.org/article/10.1088/2516-1083/abeb5b</u>
- Global Atlas of Closed-Loop Pumped Hydro Energy Storage, <u>https://doi.org/10.1016/j.joule.2020.11.015</u>

Progress in Energy

TOPICAL REVIEW

Pumped hydro energy storage to support 100% renewable energy

Andrew Blakers^{*}^(D), Timothy Weber^(D) and David Silalahi^(D)

Australian National University, Australia

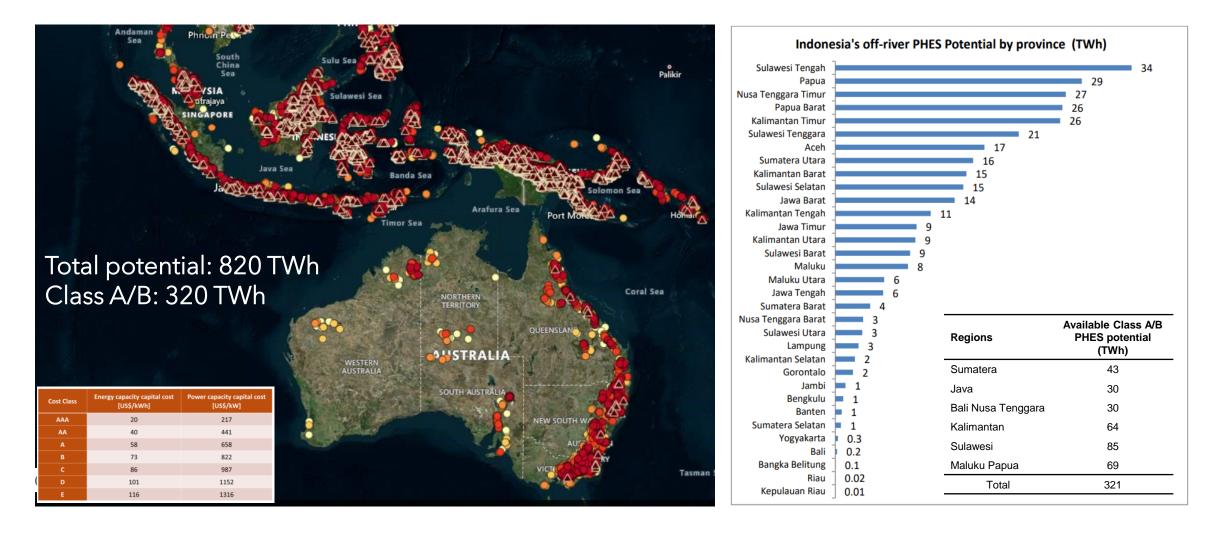
 * Author to whom any correspondence should be addressed.

E-mail: andrew.blakers@anu.edu.au

Keywords: hydro, storage, renewable energy, pumped hydro energy storage, solar energy, wind energy

Open access: https://iopscience.iop.org/article/10.1088/2516-1083/adaabd

Article Indonesia's Vast Off-River Pumped Hydro Energy Storage Potential


David Firnando Silalahi * D, Andrew Blakers D, Bin Lu and Cheng Cheng

Energies **2022**, *15*(9), 3457; https://doi.org/10.3390/en15093457 School of Engineering, Australian National University, Canberra, ACT 2600, Australia; andrew.blakers@anu.edu.au (A.B.); bin.lu@anu.edu.au (B.L.); cheng.cheng1@anu.edu.au (C.C.) * Correspondence: david.silalahi@anu.edu.au

Abstract: Indonesia has vast solar energy potential, far more than needed to meet all its energy requirements without the use of fossil fuels. This remains true after per capita energy consumption rises to match developed countries, and most energy functions are electrified to minimize the use of fossil fuels. Because Indonesia has relatively small energy potential from hydro, wind, biomass, geothermal and ocean energy, it will rely mostly on solar for its sustainable energy needs. Thus, Indonesia will require large amounts of storage for overnight and longer periods. Pumped hydro comprises 99% of global energy storage for the electricity industry. In this paper, we demonstrate that Indonesia has vast practical potential for low-cost off-river pumped hydro energy storage with low environmental and social impact; far more than it needs to balance a solar-dominated energy system.

Keywords: off-river pumped hydro; energy storage; potential; low cost; green-field; solar PV

Indonesia's Vast Off-River PHES Potential

Source: Energies 2022, 15(9), 3457; https://doi.org/10.3390/en15093457

Heatmap to Guide Siting of Solar and Wind Farms

Published 13 Feb 2025

Artide

MDPI

Heatmaps to Guide Siting of Solar and Wind Farms

Cheng Cheng *0, David Firnando Silalahi 🕑, Lucy Roberts, Anna Nadolny 🛈, Timothy Weber 🕑, Andrew Blakers 🕩 and Kylie Catchpole

> ANU Centre for Energy Systems, School of Engineering, College of Systems and Society, Australian National University, Acton, ACT 2601, Australia; david silalahi@anu.edu.au (D.E.S.); lucy.roberts@anu.edu.au (L.R.); anna.nadolny@anu.edu.au (A.N.); timothy.weber@anu.edu.au (T.W.); andrew.blakers@anu.edu.au (A.B.); kylie.catchpole@anu.edu.au (K.C.) * Correspondence: cheng.cheng1@anu.edu.au

Abstract: The decarbonization of the electricity system coupled with the electrification of transport, heat, and industry represents a practical and cost-effective approach to deep decarbonization. A key question is as follows: where to build new solar and wind farms? This study presents a cost-based approach to evaluate land parcels for solar and wind farm suitability using colour-coded heatmaps that visually depict favourable locations. An indicative cost of electricity is calculated and classified for each pixel by focusing on key factors including the resource availability, proximity to transmission infrastructure and load centres, and exclusion of sensitive areas. The proposed approach mitigates the subjectivity associated with traditional multi-criteria decision-making methods, in which both the selection of siting factors and the assignment of their associated weightings rely highly on the subjective judgements of experts. The methodology is applied to Australia, South Korea, and Indonesia, and the results show that proximity to high-voltage transmission and load centres is a key factor affecting site selection in Australia and Indonesia, while connection costs are less critical in South Korea due to its smaller land area and extensive infrastructure. The outcomes of this study, including heatmaps and detailed statistics, are made publicly available to provide both qualitative and quantitative information that allows comparisons between regions and within a region. This study aims to empower policymakers, developers, communities, and individual landholders to make informed decisions and, ultimately, to facilitate strategic renewable energy deployment and contribute to global decarbonization.

Keywords: solar photovoltaics; wind energy; GIS analysis; heatmap; resource assessment

Approximately three-quarters of global greenhouse gas emissions arise from fossil

wind energy, coupled with the electrification of land transport using electric vehicles and

heating through electric heat pumps and furnaces [2]. Emissions from fossil fuels used in the chemical industry (metals, chemicals, materials, synthetic aviation and shipping fuels)

can also be addressed by solar and wind through electrolysis to produce clean hydrogen.

the global net additions in electricity generation capacity, continuing their dominance of

new capacity additions since 2020 [3-5]. Therefore, the aforementioned decarbonization

In 2023, new installations of solar photovoltaics (PV) and wind accounted for 80% of

Academic Editor: Giorgio Vilardi

check for updates

Received: 13 January 2025 Revised: 30 January 2025 Accepted: 6 February 2025 Published: 13 February 2025

1. Introduction Citation: Cheng C;Silalaht D.F.; Roberts, L.; Nadolny, A.; Weber, T.; 1.1. Background and Motivation Blakers, A.; Catchpole, K. Heatmaps to Guide Stiing of Solar and Wind Farms fuels [1]. A highly credible and economical pathway to achieve rapid and deep emission Energies 2025, 18, 891, https:// dot.org/10.3390/en18040891 reductions involves the decarbonization of electricity through the deployment of solar and

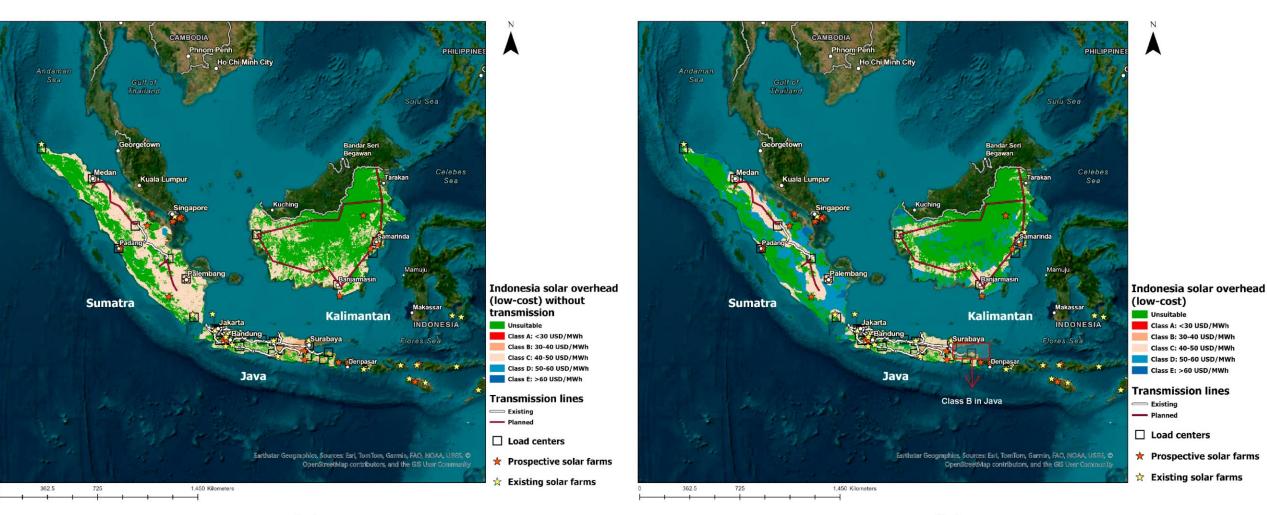

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).

Table 4. Summary of solar PV potential in Sumatra, Java, and Kalimantan under low-cost, overhead transmission scenario.

Cost Classes	Sumatra	Java	Kalimantan
Class A: <usd 30="" mwh<="" td=""><td>-</td><td>-</td><td>-</td></usd>	-	-	-
Class B: USD 30–40/MWh	-	1145 GW	-
Class C: USD 40-50/MWh	10,363 GW	6698 GW	9193 GW
Class D: USD 50-60/MWh	13,708 GW	471 GW	7253 GW
Class E: >USD 60/MWh	3488 GW	1 GW	1041 GW
Total	27,559 GW	8316 GW	17,487 GW
Population (millions)	61	152	17

Open access: <u>https://doi.org/10.3390/en18040891</u>

Indonesia solar overhead low-cost heatmap and comparative heatmap without the effect of transmission

(a)

 (\mathbf{b})

Solar and wind are the most affordable sources of clean energy

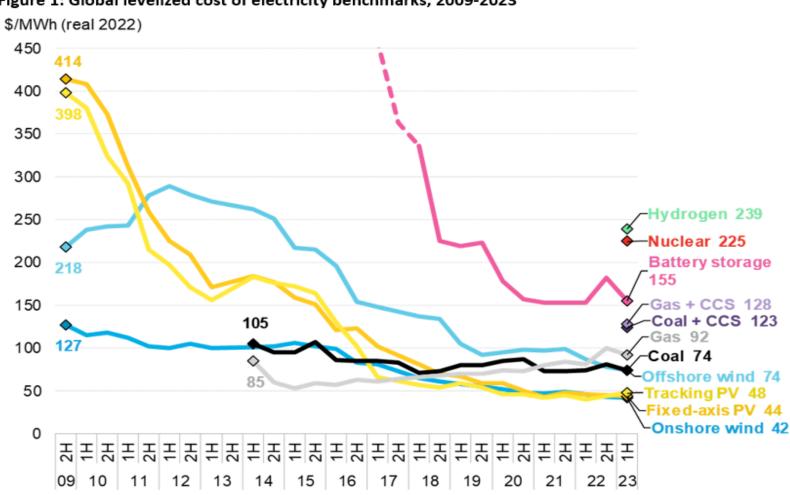


Figure 1: Global levelized cost of electricity benchmarks, 2009-2023

Source: Bloomberg NEF

Potential of Floating Solar PV in Indonesia

Indonesia Results

	Sensit	tivities	Results												
Waterbody	Minimum	Maximum	Suitable		Fixed Tilt: Mono	ofacial	Fixed Tilt: Bifacial								
Туре	Shore Distance (m)	Shore Distance (m)	Waterbody Area (km ²)	Capacity (MW)	Generation (GWh/year)	Average Net Capacity Factor (%)	Capacity (MW)	Generation (GWh/year)	Average Net Capacity Factor (%)						
	0	500	273	27,341	39,150	16.3%	27,341	41,108	17.2%						
D	(Close to	1,000	340	34,000	48,604	16.3%	34,000	51,034	17.1%						
Reservoirs	Shore)	2,000	340	34,000	48,604	16.3%	34,000	51,034	17.1%						
(including	50	500	212	21,246	30,444	16.4%	21,246	31,967	17.2%						
hydropower and non-	50 (Median)	1,000	278	27,792	39,741	16.3%	27,792	41,728	17.1%						
and non- hydropower	(Median)	2,000	304	30,406	43,411	16.3%	30,406	45,581	17.1%						
reservoirs)	100	500	163	16,282	23,335	16.4%	16,282	24,501	17.2%						
reservoirs)	(Far From	1,000	227	22,727	32,492	16.3%	22,727	34,117	17.1%						
	Shore)	2,000	253	25,282	36,079	16.3%	25,282	37,883	17.1%						
	0	500	2,604	260,425	357,115	15.7%	260,425	374,971	16.4%						
	(Close to	1,000	3,296	329,563	448,455	15.5%	329,563	470,878	16.3%						
	Shore)	2,000	3,296	329,563	448,455	15.5%	329,563	470,878	16.3%						
	50	500	2,031	203,115	278,210	15.6%	203,115	292,120	16.4%						
Natural	50	1,000	2,719	271,897	369,059	15.5%	271,897	387,511	16.3%						
Waterbody	(Median)	2,000	3,362	336,217	451,573	15.3%	336,217	474,152	16.1%						
	100	500	1,539	153,920	210,464	15.6%	153,920	220,987	16.4%						
	(Far From	1,000	2,223	222,322	300,785	15.4%	222,322	315,824	16.2%						
	Shore)	2,000	2,864	286,435	383,012	15.3%	286,435	402,163	16.0%						
	0	500	2,878	287,766	396,265	15.7%	287,766	416,078	16.5%						
	(Close to	1,000	3,636	363,563	497,059	15.6%	363,563	521,912	16.4%						
	Shore)	2,000	3,636	363,563	497,059	15.6%	363,563	521,912	16.4%						
		500	2,244	224,361	308,654	15.7%	224,361	324,087	16.5%						
All Suitable	50	1,000	2,997	299,689	408,800	15.6%	299,689	429,240	16.4%						
Waterbodies	(Median)	2,000	3,666	366,622	494,984	15.4%	366,622	519,733	16.2%						
	100	500	1,702	170,202	233,799	15.7%	170,202	245,488	16.5%						
	(Far From	1,000	2,450	245,049	333,277	15.5%	245,049	349,941	16.3%						
	Shore)	2,000	3,117	311,717	419,092	15.3%	311,717	440,046	16.1%						

Source: <u>FPV Technical Potential Assessment for Southeast Asia</u>

Potential of Floating Solar PV in Indonesia

	Table	I. Floating P	V Potentials h	higher than 1 MW	o in Indones	ia.	
Province	Number of reservoirs (sites)	Area of Reservoir (ha)	Floating PV Potential (MWp)	Province	Number of reservoirs (sites)	Area of Reservoir (ha)	Floating PV Potential (MWp)
Aceh	15	7,983.39	231.52	Lampung	10	3,084.23	89.44
Bali	5	2,764.95	80.18	Maluku	5	1,354.22	39.27
Banten	9	2,221.85	64.43	Maluku Utara Nusa Tenggara	14	3,399.97	98.60
Bengkulu DI	4	303.22	8.79	Barat Nusa Tenggara	15	4,293.09	124.50
Yogyakarta	1	145.84	4.23	Timur	12	2,610.92	75.72
DKI Jakarta	1	79.78	2.31	Papua	103	58,198.58	1,687.76
Gorontalo	2	2,276.72	66.02	Papua Barat	15	22,859.90	662.94
Jambi	6	6,014.01	174.41	Riau Sulawesi	31	18,906.24	548.28
Jawa Barat	21	21,662.33	628.21	Selatan Sulawesi	17	93,151.20	2,701.39
Jawa Tengah	23	15,331.71	444.62	Tengah Sulawesi	11	42,356.70	1,228.34
Jawa Timur Kalimantan	38	5,644.05	163.68	Tenggara	1	51.21	1.49
Barat Kalimantan	58	28,461.03	825.37	Sulawesi Utara	6	5,632.11	163.33
Selatan Kalimantan	21	7,818.18	226.73	Sumatera Barat Sumatera	8	23,727.96	688.11
Tengah Kalimantan	42	7,773.94	225.44	Selatan	19	17,334.50	502.70
Timur Kalimantan	28	40,239.23	1,166.94	Sumatera Utara	7	115,514.35	3,349.91
Kalimantan Utara Kepulauan	2	79.93	2.32	TOTAL	555	563,724.11	16,347.99
Riau	5	2,448.77	71.01				

As result, the country has 5,807 potential reservoirs for FPV and 26 hydropower plants with a reservoir area with a potential utilization of more than 1 MW. Those sites are suitable for 3 GW floating power plants and 2.8 GW hydropower. And those sites can reduce CO_2 emissions by 2,911,197 tonnes per year.

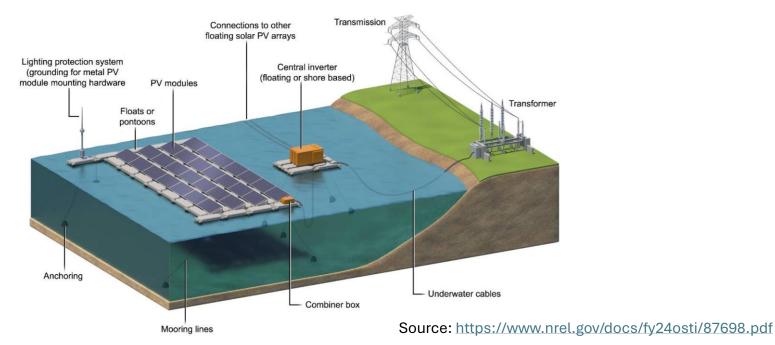
Source: Hybrid Floating Photovoltaic - Hydropower Potential Utilization in Indonesia

Potential of Floating Solar PV in Indonesia

No	Name	DAM Commercial Operation Year	Area Reservoir (Ha)	River	Province	Hydropower Capacity (MW)	FPV potential (MWp)	FPV Electricity Production (TWh/year)	Emission reduction (Tonne CO ₂ /year)										
1	Pengga	1994	554.55	Dodokan	Nusa Tenggara Barat Nusa Tenggara	0.40	16.12	22.59	15,319										
2	Pelaperado	2004	71.95	Parado	Barat Nusa Tenggara	0.305	2.09	2.93	1,986	15	Batu Tegi	2002	1335.26	Sekampung	Lampung Sulawesi	28.00	38.82	54.41	36,890
3	Mamak	1992	261.46	Mamak	Barat Nusa Tenggara	0.55	7.60	10.65	7,222	16	Kalola	1995	654.66	Kalola	Selatan Kalimantan	0.15	19.03	26.67	18,084
4	Tiu Kulit	1994	62.54	Tiu Kulit	Barat Nusa Tenggara	0.08	1.82	2.55	1,730	17	Riam Kanan Larona (Batu	1973	6129.32	Barito	Selatan Sulawesi	30	178.18	249.74	169,322
5	Sumi	1999	102.29	Sumi	Barat	0.2	2.97	4.16	2,822	18	Besi)	1978	58480.62	Larona	Selatan	166	1700.02	2,382.75	1,615,503
6	Sengguruh Karangkates/S	1988	150.39	Brantas	Jawa Timur	29.00	4.37	6.12	4,153	19	Kotapanjang Wadas	1997	9135.02	Kampar Kanan	Riau	114	265.55	372.19	252,348
7	utami	1973	1357.20	Brantas	Jawa Timur	105.00	39.45	55.29	37,489	20	Lintang	1987	1300.00	Badegolan	Jawa Tengah	16	37.79	52.97	35,911
8	Wlingi	1977	65.15	Brantas	Jawa Timur	54.00	1.89	2.65	1,796	21	Mrica	1988	631.21	Serayu	Jawa Tengah	185	18.35	25.72	17,438
9	Wonorejo	1999	357.68	Gondang	Jawa Timur	6.02	10.40	14.58	9,883	22	Sempor Kedung	1978	193.12	Cingcingguling	Jawa Tengah	1.1	5.61	7.86	5,331
10	Bening/widas	1984	465.67	Bening	Jawa Timur	0.5	13.54	18.98	12,867	23	Ombo	1984	3009.29	Uter & Serang	Jawa Tengah	22.5	87.48	122.61	83,131
11	Jatigede	2015	3588.41	Cimanuk	Jawa Barat	110.00	104.31	146.20	99,124	24	Selorejo	1970	334.44	Konto	Jawa Timur	4.5	9.72	13.62	9,237
12	Gunung Rowo	1925	50.92	Gunung wadi	Jawa Tengah	22.50	1.48	2.07	1,406	25	Cirata	1988	5393.29	Citarum	Jawa Barat	1008	156.78	219.74	148,986
13	Jatiluhur	1967	6798.31	Citarum	Jawa Barat	187.50	197.63	277.00	187,805	26	Saguling	1984	4016.93	Citarum	Jawa Barat	700.72	116.77	163.66	110,965
14	Bili Bili	1999	885.09	Jeneberang	Sulawesi Selatan	24.00	25.73	36.06	24,451	TOT	AL.					2,816	3065	4,293.80	2,911,197
15	Batu Tegi	2002	1335.26	Sekampung	Lampung	28.00	38.82	54.41	36,890										

Table 2. Potential reservoirs with hydropower for floating PV higher than 1 MWp

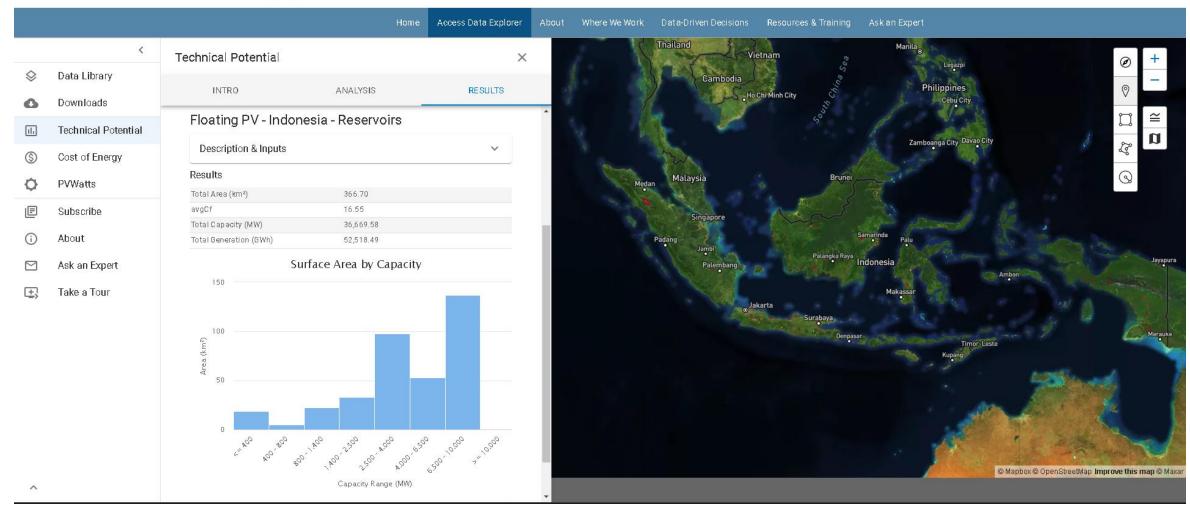
Source: <u>Hybrid Floating Photovoltaic - Hydropower Potential Utilization in Indonesia</u>


Floating PV : Solar PV sited floating on waterbodies such as reservirs, lakes, seas

Modules: Same PV technology as ground-mount or rooftop PV, with the emerging potential for tracking and/or bifacial panels.

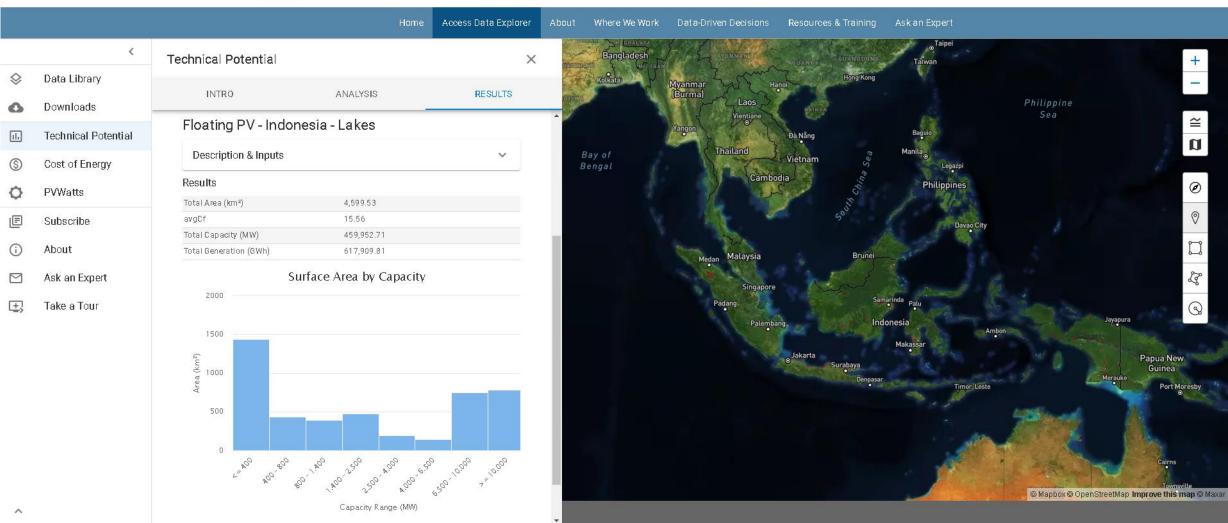
Site: Typically sited on artificial waterbodies (e.g., reservoirs, retention ponds, etc.), with emerging applications on natural waterbodies, both inland and offshore.

Structure: Platforms consist primarily of high-density polyethylene (HDPE) floats, with potentially different considerations for offshore sites. Anchors and mooring lines minimize lateral movement of the system. Racking material is similar to land-based PV (e.g., stainless steel).


Electrical Components: Similar equipment as a land-based PV installation, with some different considerations for freshwater or marine environments (e.g., electrical cables connecting the modules to each other, and connecting the modules to the central inverter).

Floating solar PV schematic

RE data explorer - NREL



https://www.re-explorer.org/index.html

RE data explorer - NREL

 \sim

https://www.re-explorer.org/index.html