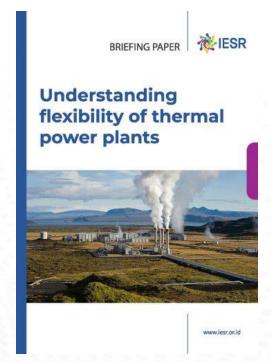

Flexible CFPPs to Accommodate Rapid Penetration of Variable Renewable Energy


Raditya Wiranegara Jakarta, 3 December 2025

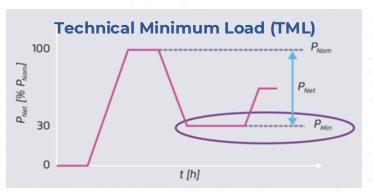
CFPPs emissions mitigation initiatives

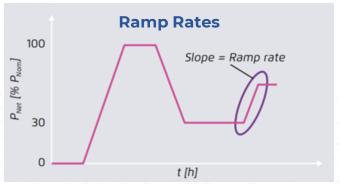
IESR previous works on flexible CFPPs

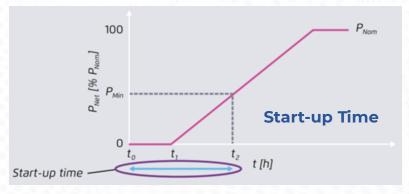
Link

Link

An analogy for CFPP's flexible operation


Baseload

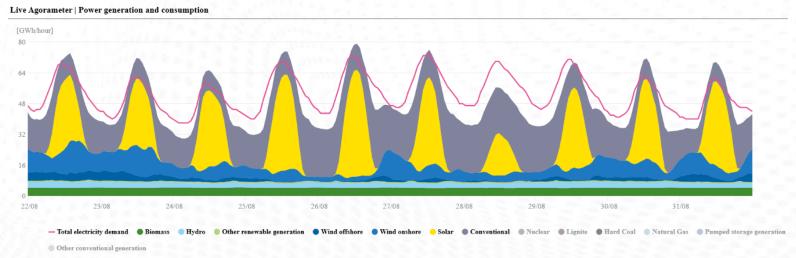

Flexible



Flexible operation parameters

• **Shorter** start-up times

Flexible operation means:


- Lower TML
- **Higher** ramp rates

... relative to each parameter at design points

Source: Agora Energiewende. (2017). Flexibility in Thermal Power Plants

Drivers for flexible CFPPs

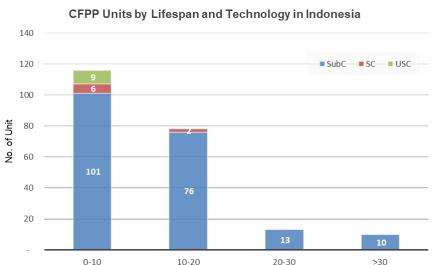
- Increasing share of renewables, especially VREs, within the system
- **Lower cost of generation** of the renewables
- **Limited options** for balancing resources
- **Tighter regulations** on emissions and environment

Source: Agora Energiewende, Live Agorameter, 2025

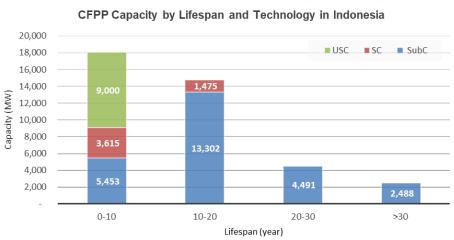
State-of-the-art of CFPPs flexible operation parameters

Technical Minimum Load (TML)

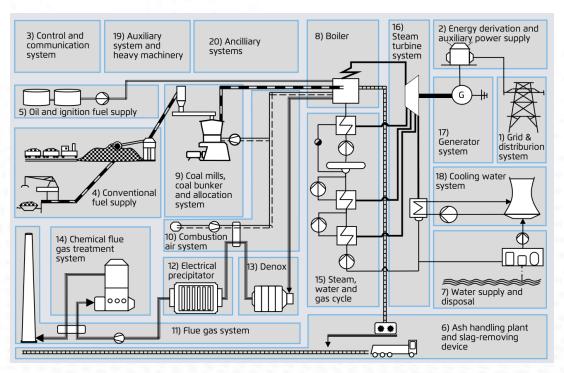
Power Plant Type	Most Used [% PNom]	State-of-the-Art [% PNom]
Hard Coal-Fired	25–40%	25–40%
Lignite-Fired	50–60%	35–50%


Ramp Rates

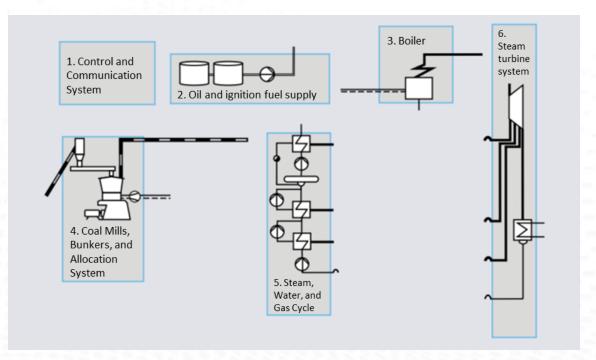
Power Plant Type	Most Used [%/min]	State-of-the-Art [%/min]	
Hard Coal-Fired	1.5–4%	3–6%	
Lignite-Fired	1–2%	2–6%	


Start-up Time

Power Plant Type	Most Used	State-of-the-Art
Hard Coal-Fired	2.5 – 3 hours (Hot start)	80 minutes – 2.5 hours (Hot start)
	5 - 10 hours (Cold start)	3 – 6 hours (Cold start)
Lignite-Fired	4 – 6 hours (Hot start)	1.25 – 4 hours (Hot start)
	8 - 10 hours (Cold start)	5 – 8 hours (Cold start)


CFPPs characteristics in Indonesia - age, capacity, and steam cycle technology

Lifespan (year)

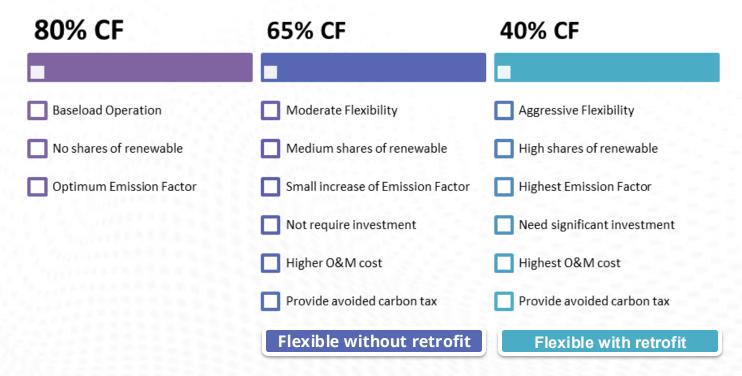


Typical subsystems found in a CFPP

Source: Agora Energiewende. (2017). Flexibility in Thermal Power Plants

Recommended subsystems to be retrofitted for CFPPs flexible

Source: Agora Energiewende. (2017). Flexibility in Thermal Power Plants


No.	Retrofit Options		Subsystems	Subcritical (500 MW)	Supercritical (750 MW)	Flexibility Objective*
1	Gas bypass to keep air heater warm	•	Steam, Water & Gas Cycle	\$1.50M	\$3.00M	IRT, RML
2	Improved APH basket life with traveling APH blowers (to remove deposits before cycling down)	•	Steam Turbine System	\$1.00M	\$1.00M	IRT, RML
3	Improved flame proving equipment for burners	•	Control & Communication Oil and Fuel Supply for Ignition Boiler	\$1.00M	\$1.50M	IRT, RML, RST
4	Improved vibration sensing & monitoring	•	Control & Communication Boiler	\$2.50M	\$3.50M	IRT, RML, RST
5	New valve operators (full arc / sliding pressure)	•	Steam, Water & Gas Cycle Steam Turbine	\$1.80M	\$4.00M	IRT, RML, RST
6	Improved APH basket life with advanced materials (for wet flue gas cycling)	•	Steam Turbine System	\$2.00M	\$2.00M	IRT, RML

*Notes:

• RML = Reduced Minimum Load; IRT = Increased Ramping Rate; RST = Reduced Start-up Time

Source: analisis IESR dan Castlerock, as quoted from Venkataraman, S. et al., Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants, NREL/SR-6A20-60862, 2014. https://docs.nrel.gov/docs/fv14osti/60862.pdf

Flexibility scenario tested

First study CFPP case: Subcritical, 575 MW, 28 y/o

Parameter	Units	Baseload (CF 80%)	Flexible without Retrofit (CF 65%)	Flexible with Retrofit (CF 40%)
Annual Electricity Generation	MWh/yr	4,029,600	3,274,050	2,014,800
Total O&M	USD/yr	35,714,400	34,728,407	32,843,310
Additional O&M	USD/yr	-	1,736,420	6,568,662
CAPEX Retrofit	USD	N/A	N/A	9,800,000
If Carbon Tax Applied:	8 8" N . WHELL			
Annual Emission Produced	tCO₂e/yr	4,041,689	3,283,872	2,020,844
Specific Carbon Emission Cap	tCO ₂ e/MWh	0.911		
Max. Emission Cap	tCO₂e/yr	3,670,966	3,670,966	3,670,966
Taxable Emission	tCO₂e/yr	370,723	N/A	N/A
Domestic Carbon Tax Rate: 1.88 USD/tC	O ₂ e			
Annual Carbon Tax Paid	USD/yr	695,106	N/A	N/A
Potential Avoided Carbon Tax Annually	USD/yr	N/A	695,106	695,106
International Carbon Tax Rate: 19 USD/t0	CO₂e			
Annual Carbon Tax Paid	USD/yr	7,043,741	N/A	N/A
Potential Carbon Tax Avoided Annually	USD/yr	N/A	7,043,741	7,043,741

Second CFPP study case: Supercritical, 813 MW, 13 y/o

Parameter	Units	Baseload (CF 80%)	Flexible without Retrofit (CF 65%)	Flexible with Retrofit (CF 40%)
Annual Electricity Generation	MWh/yr	5,697,504	4,629,222	2,848,752
Total O&M	USD/yr	50,497,056	49,102,948	46,437,584
Additional O&M	USD/yr		2,455,147	9,287,517
CAPEX Retrofit	USD	N/A	N/A	15,000,000
If Carbon Tax Applied:				
Annual Emission Produced	tCO₂e/yr	5,253,099	4,268,143	2,626,549
Specific Carbon Emission Cap	tCO ₂ e/MWh		0.911	
Max. Emission Cap	tCO ₂ e/yr	5,190,426	5,190,426	5,190,426
Taxable Emission	tCO₂e/yr	62,673	N/A	N/A
Domestic Carbon Tax Rate: 1.88 US	D/tCO ₂ e			
Annual Carbon Tax Paid	USD/yr	117,511	N/A	N/A
Potential Carbon Tax Avoided Annually	USD/yr	N/A	117,511	117,511
International Carbon Tax Rate: 19 U	SD/tCO ₂ e			
Annual Carbon Tax Paid	USD/yr	1,190,778	N/A	N/A
Potential Carbon Tax Avoided Annually	USD/yr	N/A	1,190,778	1,190,778

Benefits from the perspective of system operator, in this case PLN

Cons Study	Defended Bridge	Cost of generation (USD/year)			
Case Study	Reference Price	CF 80%	CF 65%	CF 40%	
Subcritical	DMO	209.539.200	(4.608.855)		
575 MW	International market price	239.864.918	(21.093.967)	(56.250.580)	
Supercritical	DMO	346.620.920	(17.092.512)	(45.580.032)	
813 MW	International market price	396.785.893	(12.330.171)	(32.880.455)	

The calculation above assumed the energy loss due to the flexible operation is replaced by solar PV

Another benefit...

Scenario	CFPP 100 MW	CFPP 600 MW
High solar irradiance	354.000.000 IDR	2.120.000.000 IDR
Low solar irradiance	265.000.000 IDR	1.590.000.000 IDR

- Reduce the start-up/shutdown → Reduce High Speed Diesel (HSD)
- Assumptions:
 - HSD price: 10.600 14.150 IDR/litre
 - HSD usage during start-up:
 - CFPP100 MW: 25.000 litre
 - CFPP 600 MW: 150.000 litre.

Source: IESR. (2022). Flexible Thermal Power Plant: An Analysis of Operating Coal-Fired Power Plants Flexibly to Enable the High-Level Variable Renewables in Indonesia's Power System

Recommendations

Phased Emission Reduction:

- Supplementary strategy to CFPPs phase-out.
- Low-utilization high-value operations.

Leverage Flexibility for Grid Stability:

- Ancillary services becomes critical in a high VRE-share system.
- CFPPs, through retrofitting and operational adjustments, could fit in the role, ensuring grid adequacy and security.

Manage Financial and Regulatory Hurdles:

- A review and amendment of existing PPAs is necessary.
- The most opportune time for these investments is after debt repayments have been completed and higher tariffs can be negotiated to recover costs.

Prioritize Older and Less Efficient Units:

- Focus on subcritical and supercritical CFPP units as they make up the majority of Indonesia's fleet.
- Already at a stage where flexibility upgrades are most relevant and cost-effective.

Thank you

Accelerating Low Carbon Energy Transition

- mww.iesr.or.id
- f iesr.id
- @ iesr.id
- IESR
- in lesr