Indonesia Energy Transition Homeworks

(Jakarta, 12 January 2023) – By definition, the energy transition is an effort to change the energy supply from previously a coal-dependent source to cleaner energy. This is the effort that the Indonesian government continues to pursue to achieve national energy security and autonomy. However, there are still many tasks that must be fulfilled by the Indonesian government.

Handriyanti Diah Puspitarini, Research Manager of the Institute for Essential Services Reform (IESR) in the Ruang Publik KBR talk show: Energy Transition in Indonesia, How Far We’ve Come organized by Berita KBR (10/01) explained that the IESR report on energy transition monitors public readiness through surveys and government readiness through research.

“Bottom-up side has supported the procurement of cleaner energy, but based on the transition readiness framework studied in the Indonesia Energy Transition Outlook 2023, the government (top-down) still has many things to improve, especially in terms of commitment and regulation,” Handriyanti said.

Meanwhile, on the same occasion, Raden Raditya Yudha Wiranegara, IESR Senior Researcher stated that from the fossil fuel side, the government has not yet paid attention to carbon emissions produced by mining, oil and gas industries.

“The government only monitors carbon dioxide (CO2) emissions, which only has a fraction of methane’s heat-trapping ability, around 29-30 times less. If there is a reduction in methane gas by only 30%, it will help abate the temperature rise by 0.5°C,” said Raditya.

Handriyanti and Raditya then discussed the upward trend of buying electric vehicles. The high price then led to the government’s proposal for subsidizing these vehicles, which is expected to stimulate public demand and lower the price of electric vehicles eventually.

However, according to them, there are several points of public resistance regarding the energy transition and the use of electric vehicles. The first is the view that fossil fuels are cheaper than renewable energy.These prices are the result of government intervention in the form of price capping, subsidies and compensation. This will surely burden the state budget when global oil prices rise. Second, there is range anxiety, which means the fear of electric vehicles inability to travel long distances.

“The government then has to work around this by increasing the number of charging stations at rest areas in-between journeys,” said Raditya.

Handriyanti and Raditya discuss the government’s progress and tasks in the matter of energy transition from a techno-economic, regulatory and funding perspective. They said that the price of renewable energy technology is becoming more affordable every year, for example, the price of solar modules is 70% cheaper than 7-10 years ago and is predicted to decrease even more. Supporting Regulations such as Presidential Regulation No. 112/2021 which stipulate ministers to make a roadmap for retiring coal-fired power plants (CFPP) needs to be supported. However, the implementation of this regulation still needs to be monitored and improved, especially considering that coal and fossil funding is currently still 10 times larger than renewable energy funding.

“The presence of international forums such as the G20 has encouraged Indonesia to make commitments towards energy transition and attract financing for those efforts. It is hoped that this financing can help Indonesia achieve its target of a renewable energy mix of 23% by 2025,” they concluded.

The Government’s Electric Vehicle Infrastructure Target is Still Creating Range Anxiety

Electric vehicles have become increasingly popular recently. The Indonesian government itself has stated that the use of electric vehicles is one of Indonesia’s energy transition strategies. The Ministry of Energy and Mineral Resources announced a target of electric vehicle penetration of 2 million electric cars and 13 million electric motorcycles by 2030.

The magnitude of the electric vehicle penetration target certainly needs to be accompanied by a supporting ecosystem such as the availability of charging infrastructure, various models of EV, as well as incentives for electric vehicle users. Zainal Arifin, executive vice president of engineering and technology at PLN, at the IETD 2021, said that to answer the needs of the electrical energy ecosystem, the government opens opportunities for the private sector to develop charging infrastructure. So far, the adoption of electric vehicles has not been very encouraging. Until 2021, there were 5486 units of two-wheeled vehicles and 2012 four-wheeled vehicles have been certified. However, the adoption rate is still 654 units of electric cars.

The limited number of public charging stations is one of the factors that discourage potential consumers from buying electric vehicles. People need assurance if they run out of power in the middle of the trip, there are many charging stations available.

Although for a measured distance, this charging issue can be anticipated and calculated, but, it is necessary to consider the ratio between the number of vehicles and the SPKLU (Public Charging Station). If we fulfill the government’s target, the ratio of electric vehicles to SPKLU will be around 1:70. This ratio is still too small and causes anxiety when people use electric vehicles because of the limited number of charging spots.

Reflecting on the experience of several countries that have successfully penetrated large-scale electric vehicles such as China, the United States and Norway, in terms of providing public charging stations, the ratio between charging stations and electric vehicles is averagely 1:20. Indonesia is expected to continue to improve the EV ecosystem, one of which is charging stations.

“The government must have an attractive business model to provide massive charging stations so that investors are interested in taking part in the project,” explained Idoan Marciano, Electric Vehicle Specialist, IESR.

Electric vehicles are believed to be a clean, low-emissions transportation solution. Massive use of electric vehicles can reduce emissions in the transportation sector. In the context of Indonesia, massive penetration of EV must also be accompanied by rapid deployment of renewable energy in the power generation sector as the main power producer that will be used by electric vehicles.

The price of electric vehicles which are still higher than Internal Combustion Engine (ICE) vehicles is also highlighted. Government intervention to reduce the price of electric vehicles is needed, but also needs to be wise in designing the intervention scheme considering that electric vehicles are currently still targeting the upper middle class economy.

Particular attention can be paid to the development of faster two-wheeled electric vehicles to encourage penetration in society. The price difference, which is not as much as 4-wheeled vehicles, will be one of the driving factors for the electrification of two-wheelers. In addition, the public procurement of official vehicles for the government and public transportation can be a good strategy to transform the transportation system in Indonesia. 

A Pile of Government Homework to Develop Indonesia’s Electric Vehicle Market

Jakarta, August 5, 2021, The electric vehicle market in Indonesia is still not well managed, even though there is good progress from an industrial point of view. The development of the electric vehicle industry in Indonesia is specifically regulated in Presidential Regulation 55/2019 which provides a legal basis for the development of electric vehicles. The ratification of this regulation is a good thing to provide legal certainty as well as to show the government’s commitment to support the development of electric vehicles in Indonesia. Two years since the ratification of Presidential Regulation 55/2019, there have been positive improvements in terms of an increasingly integrated industry starting from the battery industry with the formation of the Indonesia Battery Corporation (IBC), and several car and battery manufacturers who have expressed interest in investing in Indonesia. 

 

The Ministry of Industry aims that by 2030 the penetration of electric vehicles will reach 600 thousand four-wheeler EV and 2.45 million two-wheeler. To achieve this target, it is necessary to build a market by growing interest in adopting electric vehicles in the community. Public interest in owning an electric vehicle is much influenced by the price of the electric vehicle itself. As of now, the price difference between electric vehicles and Internal Combustion Engine (ICE) cars is currently quite significant which makes people interested in adopting electric vehicles.

 

To grow the electric vehicle market, the Institute for Essential Services Reform (IESR) views that the government can take the following steps, such as implementing a number of incentives, for example with tax reduction and the flexibility to use certain routes.

 

Not only that, awareness about technology and the economic benefits of owning an electric vehicle needs to be further promoted. This relatively new technology is still not well known to the public. Even among owners and enthusiasts of electric vehicles, there is a kind of range anxiety, namely the feeling of worrying about not being able to reach the destination with the battery power of the car. The existence of charging facilities that are not evenly distributed from one place to another is another consideration. Ensuring the availability of supporting facilities, such as charging stations, is also important to support the adoption of electric vehicles.

In addition to introducing technology and ensuring the availability of supporting facilities, the public should also be encouraged to compare the total ownership cost between ICE vehicles and electric vehicles.

 

“The significant difference is in maintenance costs and fuel costs per kilometer which are considered more efficient on electric vehicles. But often prospective consumers do not calculate that far before buying a vehicle. This is good for raising public awareness as well as promoting electric vehicles,” said Fabby Tumiwa, Executive Director of IESR.

 

Regarding the incentives that will be given to electric vehicle owners, Fabby emphasized that the government must seriously think about the form of given incentives, considering that electric vehicles are actually classified as luxury goods. Indonesia can refer to several countries such as China and Norway regarding the types of incentives provided for electric vehicles.

 

Strengthening the Development of Electric Vehicle Ecosystem in Indonesia, IESR Compare with the United States, Norway, and China

Jakarta, 23 February 2021 

Aligned with the Paris Agreement, Indonesia needs to prioritize reducing greenhouse gas (GHG) emissions in the transportation sector to maintain the earth’s temperature below 2oC. In Indonesia, the transportation sector consumes 45% of total final energy, of which 94% comes from vehicle fuels. Exhaust gas emissions are almost one-third of the total emissions of the energy sector.

Many countries adopted the massive and aggressive penetration of electric vehicles to reduce GHG emissions. Indeed, the source of the vehicle’s electric power must also come from renewable energy.

The Institute for Essential Services Reform (IESR) examines best practices from other countries to create an ecosystem that supports the advancement of electric vehicles in Indonesia, through a study entitled Developing an Electric Vehicle Ecosystem in Indonesia: Lessons learned from the United States, Norway, and China. More than 100 people followed the launch of the study online (23/2). IESR also invited Firdaus Manti, Assistant Deputy for Maritime and Transportation Industry of the Coordinating Ministry for Maritime and Investment Affairs, Alief Wikarta, Lecturer and Researcher of the Department of Mechanical Engineering, ITS, and Muhammad Samyarto, PT Wika Industri Manufaktur (WIMA) as responders.

Fabby Tumiwa, Executive Director of IESR, said in his opening that Indonesia has to built aggressively the proper ecosystem to support the accelerated adoption of electric vehicles in Indonesia, by learning from the experiences of comparative countries in the study. 

“Sales of electric vehicles in Norway reached 54.3% in 2020 compared to only 1% in 2011. This is the result of the consistency of the Norwegian government in implementing policies to encourage the penetration of electric vehicles, “he said.

Norway is listed as the country with the highest market share for electric vehicles, which is more than 50%, while the total number of electric vehicles is around 430 thousand. Meanwhile, in 2019, China had a total of 3.4 million electric vehicles, and the United States was 1.5 million.

Indonesia itself, through the Ministry of Industry, is targeting the number of electric vehicles to reach 20% of the total vehicle production in 2025 (400,000 Low Carbon Emission Vehicles (LCEV) and 1,760,000 electric two-wheeled vehicles). However, until August 2020, there were only 2,279 roadworthy electric vehicles.

Five Undeveloped Electric Vehicle Ecosystems in Indonesia

Idoan Marciano, author of the study Developing an Electric Vehicle Ecosystem in Indonesia: Lessons learned from the United States, Norway, and China, assessing that the vehicle ecosystem in Indonesia has not been well developed, even though the government has issued Presidential Regulation No. 55/2019 which is the basis for accelerating the development of electric vehicles, but its derivative policies have not been able to increase the adoption of electric vehicles significantly.

Idoan explained that there are at least five ecosystems that need special consideration, namely a) policy, b) infrastructure/charging, c) industry/supply chain, d) public awareness, e) supply and availability of models.

“Generally, Indonesia is still lagging in all these aspects. From a financial policy perspective, Indonesia has provided various incentives but its total has only reduced about 40 percent of the price of electric vehicles after entering Indonesia. Furthermore, Indonesia also does not have regulations on fossil vehicle restriction, while the comparison countries have targeted 100 percent electric vehicles and banned conventional vehicles, “he explained.

In terms of charging infrastructure, Idoan views that the ratio of chargers to electric vehicles in Indonesia is still lower, namely 70: 1, while countries with high penetration of electric vehicles have a ratio of less than 25: 1.

As viewed from the industrial and supply chains, Indonesia also does not have the production capacity that is already operating to produce electric vehicle components, especially batteries. Meanwhile, China is capable of producing batteries up to 200 GWh / year.

Besides, people’s motivation to buy electric vehicles in Indonesia refers more to economic reasons and the availability of infrastructure, while people in comparison countries are more influenced by economic, environmental, and technological reasons.

Furthermore, Idoan found that the availability of supply and various models is also an important factor in the adoption of electric vehicles.

“In Indonesia, there are already 15 companies with production facilities for two-wheeled electric vehicles, with a total capacity of around 877 thousand units/year. In China, there are already 500 companies with a total production of more than 3.5 million units/year, ”he said.

This study recommends several strategies and policies that can be adopted by the government and all stakeholders to develop the electric vehicle ecosystem in Indonesia, as follows:

  1. Align the national electric vehicle adoption targets and make them binding
  2. Develop an integrated roadmap for the transition to electric vehicles
  3. Implement policies to limit the sales of fossil fuel vehicles 
  4. Provide financial incentives (from the central government) to reduce the purchase price of electric vehicles, a minimum of about 50 percent for electric cars, for electric motorbikes only 5-10 percent more expensive than the price of conventional motorbikes.
  5. Provide fiscal and non-fiscal incentives (from local governments) under the conditions of their respective regions 
  6. Impose technology transfer in collaboration with the international electric vehicle and battery manufacturers
  7. Issue supply-side policies, like fuel economy standard, conventional vehicles quota and to encourage production and increase the availability of electric vehicle models 
  8. Provide grants to research and academic institutions, as well as to EV and battery manufacturers to support R&D of electric vehicles and batteries technologies 
  9. Increase investment in domestic industrial and supply chain development of electric vehicles 
  10. Develop a more massive public charging infrastructure network through a mandate from government entities along with the subsidies for private developers 
  11. Electrify public transportation as an entry point for the adoption of the electric vehicle. IESR appreciates the ongoing collaboration.
  12. Promote electric vehicles as environmentally friendly vehicles and educate consumers on the benefits and incentives of purchasing EVs

Firdaus Manti, Assistant Deputy for Maritime Industry and Transportation at the Coordinating Ministry for Maritime and Investment Affairs, who attended the study launch webinar, said that the government will encourage and provide facilities for industry players.

“We want that Indonesia is not only a market so that we invite foreign manufacturing industries, especially four-wheelers, to be developed domestically. We also encourage hotel, retail, and small supermarket associations to provide two-wheeled public charging infrastructure, so that when shopping, they can charge their electric vehicles, “he said. 

Also, he emphasized the importance of close collaboration with all stakeholders including academics, the private sector, CSOs, and even the community as consumers to realize the development of electric vehicles in Indonesia.

Alief Wikarta, Lecturer and Researcher of the Department of Mechanical Engineering in ITS viewed that IESR study can be a solution for fuel diversification. He focuses on the community awareness ecosystem which is a challenge that deserves attention.

“Most of the Indonesian consumers are aware but not care. They know that, for example, certain technologies can reduce pollution but not using these technologies. Besides, our consumers have high price sensitivity, with only a thousand different prices, people will tend to choose cheaper ones. This is a challenge that requires a marketing strategy from production and government policies, “he added.  He said that Indonesia can also begin to develop a circular economy concept for battery recycling, which is one of the main components of electric vehicles.

Muhammad Samyarto, PT Wika Industri Manufaktur (WIMA), agreed on Idoan’s explanation regarding the quality of electric vehicles that are better than conventional vehicles.

“The problem of charging is just a concern. If you use an electric motor, you can manage your daily use of an electric vehicle. However, it remains a challenge for us together so that it answers people’s concerns, ”he said.

12 IESR Recommendations for Accelerating of Electric Vehicle Ecosystem Development in Indonesia

Tuesday, 23 February 2021-Indonesia needs to work harder to prevent the increase in the earth’s temperature below 2℃ by reducing the addition of greenhouse gas (GHG) emissions in the world, including by boosting the penetration of renewable energy and environmentally-friendly transportation.

The transportation sector contributes about a quarter of total global GHG emissions. The amount of this emission will increase along with the development of a country’s economy. In 2019, the transportation sector was the second-largest contributor to Indonesia’s greenhouse gas (GHG) emissions (157 million tonnes CO2 or 27%) after the industrial sector (215 million tonnes CO2 or 37%). Many countries in the world, including China, the United States, and countries in Europe are increasingly adopting electric vehicles which are proven to have lower emissions and better efficiency in the use of electric energy than conventional vehicles.

By online, the Institute for Essential Services Reform (IESR) launched a study on Developing an Electric Vehicle Ecosystem in Indonesia: Lessons learned from the United States, Norway, and China, which contains prominent strategic and policy recommendations for the government for the advancement of the electric vehicle ecosystem in Indonesia. 

“Nowadays, there are 17 countries that have not allowed the sale of fossil fuel-based vehicles from 2025-2040, one of which is Norway, which will ban internal combustion engine vehicles by 2025,” said Fabby Tumiwa, Executive Director of IESR.

Electric vehicles are seen as one of the solutions to reduce GHG emissions from the transportation sector. The development of electric vehicles in a decade has also grown rapidly. Fabby added that globally, electric cars have experienced a rapid increase in the last decade, from 0.1 market share in 2011 to 4.4% in 2020.

“Although in general, vehicle sales have decreased by 15 percent due to the Covid-19 pandemic, the demand for electric vehicles has increased in several countries. Compared to 2019, China increased 5 percent, Europe increased 10 percent, the United States increased 4 percent, “he explained.

Quoting data from the IEA, Fabby emphasized that for the earth’s temperature to be maintained according to the Paris agreement, the adoption of electric vehicles must be 13.4% of the total vehicles from 2030.

Indonesia Has Not Developed a Planned Electric Vehicle Ecosystem

Idoan Marciano, Author of the Study on Developing Electric Vehicle Ecosystems in Indonesia: Lessons from the Experience of the United States, Norway, and China, explains the reasons IESR chose these three countries as best practices that Indonesia can emulate. The countries that registered the highest electric vehicle adoption (2019) were China (3.4 million units) and the United States (1.5 million units), while the country with the largest electric vehicle market share in the world was Norway (greater than 50 percent).

IESR believes that the electric vehicle ecosystem in Indonesia has not been well developed. The ecosystem referred to in this study includes several aspects, namely: (a) incentives and supporting policies from the government, (b) charging infrastructure; (c) the model and supply of electric vehicles; (d) public awareness and acceptance; (e) the supply chain for batteries and electric vehicle components.

The Indonesian government, through the Ministry of Industry, is targeting the number of electric vehicles to reach 20% of total vehicle production in 2025 (400,000 Low Carbon Emission Vehicles (LCEV) and 1,760,000 electric two-wheeled vehicles). However, until August 2020, there were only 2,279 roadworthy electric vehicles.

“For electric motorbikes, 1,947 units do not reflect the number of adoptions after Indonesia launched an accelerated development program for electric vehicles because this figure still describes low-performance electric vehicles, which already existed from the previous year,” added Idoan.

To meet the target, IESR encourages the Indonesian government to implement fiscal policies, which will make electric vehicle prices more competitive. Reflecting on the experiences of the three countries, incentives can be in the form of VAT exemptions, registration taxes, import duties, and subsidies. Meanwhile, currently, the total incentives provided by the Indonesian government are only able to reduce about 40 percent of the initial price of electric vehicles entering Indonesia.

No less important is the provision of non-fiscal incentives by user needs, such as the ease of obtaining a number plate (registration) which is considered to greatly increase the attractiveness of electric vehicles in China, providing access to high occupancy vehicles in several states in America. States, and granting bus line access in Norway.

“Currently, Indonesia does not have any restrictions on the use of fossil-fueled vehicles, compared to comparison countries that have targeted 100 percent EV in the next 5-20 years,” said Idoan.

Besides, from the supply side, the government also needs to increase the quantity and availability of various models of electric vehicles by providing policies that encourage producers to produce more electric vehicles, such as by setting fuel efficiency standards at an early stage and using the electric vehicle credit mechanism when the market is already on as applied in China and California.

In supporting the creation of the domestic electric vehicle industry, the government can learn from China by providing special incentives for local manufacturers and using public procurement as a tool to boost production volumes for locally made electric vehicles, thereby accelerating economies of scale.

The construction and expansion of the charging infrastructure (SPKLU and SPBKLU) networks, as well as the preparation of home charging infrastructure, are needed to support the adoption of electric vehicles. The ratio of electric vehicles to the SPKLU in 2019 was the most massive in China, namely a ratio of 6.5: 1. The ratio represents countries with a more mature level of electric vehicle development. Meanwhile, if Indonesia follows the road map issued by PLN, it will only reach around 70: 1.

This study recommends several strategies and policies that can be adopted by the government and all stakeholders to develop the electric vehicle ecosystem in Indonesia, as follows:

  1. Align the national electric vehicle adoption targets and make them binding
  2. Develop an integrated roadmap for the transition to electric vehicles
  3. Implement policies to limit the sales of fossil fuel vehicles 
  4. Provide financial incentives (from the central government) to reduce the purchase price of electric vehicles, a minimum of about 50 percent for electric cars, for electric motorbikes only 5-10 percent more expensive than the price of conventional motorbikes.
  5. Provide fiscal and non-fiscal incentives (from local governments) under the conditions of their respective regions 
  6. Impose technology transfer in collaboration with the international electric vehicle and battery manufacturers
  7. Issue supply-side policies, like fuel economy standard, conventional vehicles quota and to encourage production and increase the availability of electric vehicle models 
  8. Provide grants to research and academic institutions, as well as to EV and battery manufacturers to support R&D of electric vehicles and batteries technologies 
  9. Increase investment in domestic industrial and supply chain development of electric vehicles 
  10. Develop a more massive public charging infrastructure network through a mandate from government entities along with the subsidies for private developers 
  11. Electrify public transportation as an entry point for the adoption of the electric vehicle. IESR appreciates the ongoing collaboration.
  12. Promote electric vehicles as environmentally friendly vehicles and educate consumers on the benefits and incentives of purchasing EVs

The study report Developing an Electric Vehicle Ecosystem in Indonesia: Lessons learned from the United States, Norway, and China can be downloaded at:

Kendaraan Listrik dan Dekarbonisasi Sektor Transportasi Darat Indonesia

Siaran Pers

Transportasi darat sumbang emisi tertinggi dari total emisi gas rumah kaca sektor transportasi di Indonesia

  • Kurangi emisi gas rumah kaca dari sektor transportasi, Indonesia perlu menerapkan instrumen kebijakan untuk meningkatkan jumlah kendaraan listrik dalam menggantikan kendaraan berbahan bakar fosil
  • Di saat harga minyak dunia sedang turun saat ini, pajak karbon yang diterapkan pada bahan bakar fosil merupakan suatu instrumen yang dapat diterapkan di Indonesia untuk meningkatkan jumlah kendaraan listrik sebagai upaya penurunan emisi gas rumah kaca

Jakarta— 29 Maret 2020 — Institute for Essential Services Reform sebagai anggota dari Climate Transparency melakukan kajian mengenai dekarbonisasi sektor transportasi, dengan menganalisis rangkaian instrumen kebijakan yang diperlukan untuk meningkatkan peran kendaraan listrik dalam mendorong ambisi negara mencapai Persetujuan Paris, agar dapat berada di jalur untuk mencapai batasan target kenaikan suhu 2/1,5°C.

Julius C. Adiatma, Clean Fuel Specialist IESR, memaparkan laporan “The Role of Electric Vehicles in Decarbonizing Indonesia’s Road Transport Sector” yang di luncurkan dalam kegiatan Webinar pada Minggu 29 Maret 2020 dan juga melibatkan panelis secara daring, Dr. Mohammad Mustafa Sarinanto, Kepala Balai Besar Teknologi Konversi Energi, BPPT, dan Damantoro, Ketua Masyarakat Transportasi Indonesia Wilayah Jakarta.

“Hasil pemodelan dari studi kami menunjukkan bahwa masuknya kendaraan listrik pada pasar mobil penumpang dan sepeda motor memiliki potensi menurunkan emisi GRK dari sektor transportasi darat, terutama dari penggunaan kendaraan pribadi. Untuk mewujudkan potensi tersebut, dibutuhkan berbagai dukungan kebijakan dari pemerintah, baik kebijakan fiskal maupun non fiskal seperti penyediaan infrastruktur pengisian kendaraan listrik umum. Yang tidak kalah penting adalah mengganti pembangkit batubara dengan energi terbarukan supaya emisi gas rumah kaca tidak berpindah dari transportasi ke pembangkit” menurut Julius.

Di Indonesia, emisi dari sektor transportasi hampir mencapai 30% dari total emisi CO2, dimana emisi tertinggi terutama berasal dari transportasi darat, yang berkontribusi pada 88% dari total emisi di sektor ini (IEA, 2015). Termasuk di dalamnya adalah mobil penumpang dan sepeda motor, yang tumbuh dengan pesat seiring dengan penggunaannya sebagai moda perjalanan utama di daerah perkotaan. Misalnya, penjualan mobil domestik telah bertumbuh lebih dari dua kali lipat dalam 15 tahun terakhir (dari 480 ribu unit pada tahun 2004 menjadi di atas 1 juta unit pada tahun 2019). Tren ini diprediksi akan terus meningkat, dan dengan demikian, sektor transportasi akan terus menjadi salah satu penghasil emisi utama di negara ini. Namun, rencana mitigasi dari pemerintah untuk sektor transportasi yang tercantum dalam NDC, masih terbatas pada pengalihan bahan bakar menjadi bahan bakar nabati dan perluasan stasiun pengisian bahan bakar gas bumi. Sementara itu, peran kendaraan listrik (termasuk hibrida, hibrida plug-in, dan kendaraan listrik baterai), yang banyak dilihat oleh beberapa pakar sebagai kunci dalam mengurangi emisi GRK di sektor ini, masih belum dimasukkan dalam NDC Indonesia.

Indonesia harus mengambil tindakan mitigasi perubahan iklim secara drastis di sektor transportasi. Menurut proyeksi The Climate Action Tracker, total emisi Indonesia (tidak termasuk LULUCF) setara dengan 3,75 – 4% dari total emisi global pada tahun 2030. Agar sejalan dengan 1,5°C, proporsi bahan bakar rendah karbon di bauran bahan bakar transportasi harus meningkat menjadi sekitar 60% pada tahun 2050.

Climate Action Tracker menjabarkan skenario 1,5°C yang kompatibel untuk Indonesia, yang membatasi emisi dari sektor transportasi menjadi 2 MtCO2e pada tahun 2050. Skenario ini mencakup peningkatan penggunaan transportasi umum, peningkatan ekonomi bahan bakar kendaraan konvensional, dan elektrifikasi 100% kendaraan penumpang darat (mobil, motor, dan bus) pada tahun 2050. Untuk mencapai 100% elektrifikasi kendaraan pada tahun 2050, Indonesia perlu menghentikan penjualan kendaraan berbahan bakar fosil antara tahun 2035 s.d. 2040, dengan asumsi masa pakai kendaraan 15 tahun. Dengan penetrasi pasar kendaraan listrik yang sangat rendah saat ini, maka pemerintah perlu menerapkan kebijakan yang mendukung untuk mencapai target ini.

Di sisi lain, dengan bauran listrik saat ini, penetrasi kendaraan listrik akan meningkatkan emisi karbon di Indonesia. Peningkatan emisi ini, sebagian besar terkait dengan pembangkitan listrik dari sumber bahan bakar fosil. Selain itu, emisi juga berasal dari produksi komponen dalam kendaraan listrik, terutama baterai. Namun, sekalipun Indonesia dapat mencapai daya bauran energi terbarukan 23% pada tahun 2025, penggunaan mobil listrik diprediksi akan menghasilkan emisi karbon sekitar 2,6% lebih rendah dibanding mobil konvensional.

Erina Mursanti, Program Manager Green Economy IESR, mengatakan, dalam situasi rendahnya harga minyak dunia saat ini yang turun hingga lebih dari 50% (dari harga acuan yang tertera pada Nota Keuangan APBN 2020), pemerintah sebaiknya menerapkan pajak karbon pada pemakaian bahan bakar fosil, alih-alih menurunkan harga bahan bakar minyak dalam negeri; dimana hasil penerimaan pajak ini dapat digunakan untuk pengembangan industri kendaraan listrik.

Unduh siaran pers


Narahubung Pers:

Gandabhaskara Saputra, ganda@iesr.or.id

 

Gunakan kendaraan listrik untuk mengurangi emisi CO2

Meski demikian pengurangan emisi dari sistem kelistrikan harus menjadi prioritas utama!

Sama seperti panel surya (Photovoltaic/PV) yang semakin populer, demikian juga halnya dengan kendaraan listrik. Bahkan laporan dari International Energy Agency (IEA) tahun 2019 yang berjudul Global EV Outlook 2019 menyebutkan, bahwa perkembangan kendaraan listrik akan semakin pesat dan pada tahun 2030, penjualan kendaraan listrik per tahun akan mencapai angka 44 juta kendaraan.  

Kendaraan listrik muncul sebagai teknologi disruptif bagi mayoritas industri otomotif. Di tengah dunia yang masih didominasi oleh kendaraan bermesin bakar yang sangat tergantung pada konsumsi bahan bakar minyak (BBM), kendaraan listrik hadir dengan terobosan baru – menggunakan tenaga listrik. Tanpa konsumsi BBM, kendaraan listrik tidak akan menghasilkan emisi. Karenanya, kendaraan listrik menjadi kendaraan yang ramah lingkungan dan menjadi salah satu solusi mengatasi perubahan iklim. 

Namun, apakah benar kendaraan listrik 100% bebas dari emisi? 

Di luar emisi yang dihasilkan saat memfabrikasi kendaraan listrik, emisi tak langsung kendaraan ini diproduksi saat kita mengisi baterai kendaraan tersebut, yakni dari emisi pembangkit tenaga listrik. 

Faktor emisi CO2 di sistem Jawa-Bali mencapai 0.817 ton CO2/MWh

Berdasarkan data dari RUPTL 2019-2028, faktor emisi pembangkit untuk Jawa-Bali dan Nusa Tenggara pada tahun 2019 adalah sebesar 0,817 ton CO2/MWh. Artinya, untuk tiap 1 mega-watt (MW) pembangkit yang beroperasi selama satu jam (1 hour) – berdasarkan komposisi pembangkit saat ini di Jawa dan Bali – emisi CO2 yang dihasilkan adalah sebesar 0,817 ton. Semakin banyak MW pembangkit yang beroperasi untuk jangka waktu yang lama, semakin besar pula MWh-nya sehingga total emisinya pun semakin besar. 

Faktor emisi dihitung dari total emisi CO2 yang dihasilkan oleh seluruh pembangkit energi fosil di suatu sistem dibagi dengan total energi listrik dalam MWh atau GWh yang dihasilkan oleh seluruh pembangkit di sistem tersebut, baik pembangkit fosil maupun terbarukan. Artinya, semakin banyak pembangkit energi terbarukan di suatu sistem, semakin kecil pula faktor emisinya.

Dengan menggunakan data di RUPTL 2019-2028, total emisi gas rumah kaca (GRK), komposisi pembangkit, dan faktor emisi GRK untuk sistem kelistrikan Jawa-Bali pada tahun 2019 dapat dirangkumkan sebagai berikut:

Dari faktor emisi di atas dapat dilihat bahwa emisi dari pembangkit listrik tenaga uap (PLTU) yang berbahan bakar batubara sangat dominan dibanding dengan pembangkit-pembangkit tenaga fosil lainnya. Hal ini berarti, dengan semakin banyak PLTU yang digunakan di sistem kelistrikan Jawa-Bali, semakin besar pula total emisi CO2-nya.

Pembangkit berbahan bakar fosil masih mendominasi sistem kelistrikan Jawa-Bali

Berdasarkan RUPTL 2019-2028, pada tahun 2018, pembangkit listrik tenaga fosil memiliki total kapasitas terpasang sebesar 33,8 GW sedangkan pembangkit listrik energi terbarukan hanya sebesar 3,9 GW. Kemudian di tahun 2028, pembangkit fosil diprediksi meningkat sebesar 57,4% atau menjadi sebesar 53,2 GW, sedangkan pembangkit energi terbarukan hanya menjadi sebesar 11,9 GW, walaupun tingkat pertumbuhannya jauh lebih tinggi, yakni sebesar 205%.

Setiap pembangkit listrik memiliki daya mampu netto (DMN), yakni besarnya daya output pembangkit yang dapat dimanfaatkan untuk menyuplai beban sebab telah dikurangi dengan pemakaian sendiri pembangkit tersebut. Total DMN ini kemudian menjadi dasar bagi PLN untuk mengalokasikan pembangkit-pembangkitnya guna menyuplai permintaan listrik setiap hari. 

Kurva beban sistem Jawa-Bali tanggal 5 November 2019 dan perkiraan komposisi pembangkitnya

Berdasarkan data yang dikeluarkan oleh Pusat Pengatur Beban (P2B) Jawa-Bali, pada tanggal 5 November 2019, beban puncak sistem Jawa-Bali mencapai 27.000 MW, sementara daya mampu netto pembangkit sebesar 27.432 MW, seperti ditunjukkan oleh kurva di bawah ini.

Untuk menyuplai beban ini, PLN mengalokasikan pembangkit-pembangkit yang ada di sistem Jawa-Bali, yang dapat diakses dari situs PLN P2B. Untuk tanggal 5 November 2019, total kapasitas pembangkit yang dialokasikan oleh PLN adalah sebesar 27.158 MW (untuk pukul 13.30) dan sebesar 27.435 MW (untuk pukul 18.00) dengan komposisi sebagai berikut: 

Pembangkit-pembangkit yang tersedia tersebut kemudian akan diatur waktu operasi dan besar pembangkitannya sesuai dengan dispatch order PLN.

Dispatch Order

Dispatch order dapat diartikan sebagai urutan pembangkit listrik mana yang harus dinyalakan guna menyuplai beban pada suatu waktu tertentu. Dispatch order ini biasanya didasarkan pada biaya kapital, biaya operasi, dan kecepatan suatu pembangkit untuk dinyalakan dan diatur daya keluarannya (ramping-up). Berdasarkan kriteria-kriteria ini, pembangkit dapat dikategorikan menjadi tiga kelompok:

  1. Pembangkit yang memiliki biaya investasi besar, namun biaya operasi murah dan ramping-up lambat akan digunakan untuk menyuplai beban dasar (base load). Pembangkit base load ini umumnya memiliki capacity factor (CF) cukup tinggi dan jenis pembangkitnya antara lain pembangkit listrik tenaga uap (dengan batu bara) dan pembangkit listrik tenaga panas bumi. 
  2. Pembangkit berikutnya adalah pembangkit untuk menyuplai beban menengah. Biaya kapital pembangkit ini umumnya lebih murah dan CF-nya sedang. Pembangkit combined-cycle dan pembangkit listrik tenaga gas adalah jenis pembangkit yang umumnya masuk dalam kategori ini. 
  3. Pembangkit terakhir adalah pembangkit yang dioperasikan untuk menyuplai beban puncak. Pembangkit pada kategori ini umumnya memiliki biaya kapital rendah, biaya operasi tinggi, dan CF-nya rendah. Pembangkit listrik tenaga air, minyak (diesel), dan pump storage adalah beberapa pembangkit yang masuk dalam kategori ini.

Dengan melihat jenis-jenis pembangkit yang dimiliki oleh PLN untuk sistem kelistrikan Jawa-Bali dan penjelasan sebelumnya, maka dispatch ordernya dapat diasumsikan sebagai berikut: PLTP – PLTU – PLTGU – PLTG – PLTA – PLTDG – PLTD. Namun, di tengah kondisi harga gas yang mahal, urutan dispatch pembangkit Jawa-Bali untuk contoh di atas dapat diatur ulang menjadi PLTP – PLTU – PLTGU – PLTA – PLTG – PLTDG – PLTD. Dispatach order ini kemudian disusun untuk menyuplai seluruh kebutuhan beban sehingga diperoleh kurva sebagai berikut.

Dengan melihat profil suplai pembangkit Jawa-Bali yang sangat didominasi oleh pembangkit berbahan bakar fosil, tidak heran jika faktor emisi CO2nya tinggi. Akibatnya, setiap konsumsi listrik di jaringan tersebut secara tidak langsung memiliki besaran emisi yang melekat padanya. Kita ambil misalnya mobil listrik sebagai contoh. Bila ada sepuluh ribu mobil listrik (asumsi kapasitas baterai 80 kWh dan diperlukan 1 jam untuk mengisi penuh dari kondisi kosong) melakukan pengisian bersamaan selama satu jam, maka kurang lebih 3.200 MWh listrik akan dikonsumsi. Dengan konsumsi sebesar itu, maka 2.614,4 ton CO2 akan dihasilkan sebagai akibat aktivitas pembangkitan listrik, walaupun saat beroperasi mobil-mobil listrik tersebut tidak akan menghasilkan CO2. Karena itu, agar penggunaan mobil listrik benar-benar dapat berkontribusi untuk mengurangi emisi CO2, maka emisi sistem kelistrikannya harus terlebih dahulu dikurangi, untuk sistem Jawa-Bali, bahkan diperlukan pengurangan yang drastis.


[1] Kendaraan listrik yang dimaksud di sini adalah kendaraan listrik dengan baterai, bukan kendaraan listrik plug-in (plug-in EV) ataupun kendaraan listrik hybrid

[2] Berdasarkan skenario EV30@30

[3] Lebih dari 95% kapasitas terpasang pembangkit di sistem Jawa-Bali dan Nusa Tenggara berada di Jawa-Bali, sehingga dalam kasus ini faktor emisi Jawa-Bali dan Nusa Tenggara digunakan menjadi factor emisi sistem Jawa-Bali.

[4] Dapat diakses di: https://hdks.pln-jawa-bali.co.id/app4/system.php?fnp=1&setdate=2019-11-06&sSession=TEMP-XXXXXX-DVZbLQSBFzLCOeutMNcpnrsYJtBKlrco&sys=LDC&regcode=101&setdate=2019-11-05&dl=7519

[5] Capacity Factor (CF) adalah perbandingan antara produksi energi listrik suatu pembangkit dengan maksimum produksi energi listrik pembangkit itu, dalam suatu rentang waktu tertentu (biasanya satu tahun).

**

Tulisan lain terkait emisi dari sistem kelistrikan dalam kaitannya dengan penggunaan kendaraan listrik juga dapat dibaca di laporan IESR ICEO 2020 bagian laporan khusus tentang kendaraan listrik.